Howard T. Ricketts Laboratory, Argonne National Laboratory, Lemont, lllinois, USA.
Department of Microbiology, University of Chicago, Chicago, Illinois, USA.
mBio. 2017 May 16;8(3):e00646-17. doi: 10.1128/mBio.00646-17.
Glutathionylation, the formation of reversible mixed disulfides between glutathione and protein cysteine residues, is a posttranslational modification previously observed for intracellular proteins of bacteria. Here we show that LcrV, a secreted protein capping the type III secretion machine, is glutathionylated at Cys and that this modification promotes association with host ribosomal protein S3 (RPS3), moderates type III effector transport and killing of macrophages, and enhances bubonic plague pathogenesis in mice and rats. Secreted LcrV was purified and analyzed by mass spectrometry to reveal glutathionylation, a modification that is abolished by the codon substitution CysAla in Moreover, the mutation enhanced the survival of animals in models of bubonic plague. Investigating the molecular mechanism responsible for these virulence attributes, we identified macrophage RPS3 as a ligand of LcrV, an association that is perturbed by the CysAla substitution. Furthermore, macrophages infected by the variant displayed accelerated apoptotic death and diminished proinflammatory cytokine release. Deletion of , which encodes glutathione synthetase of , resulted in undetectable levels of intracellular glutathione, and we used a Δ mutant to characterize the biochemical pathway of LcrV glutathionylation, establishing that LcrV is modified after its transport to the type III needle via disulfide bond formation with extracellular oxidized glutathione., the causative agent of plague, has killed large segments of the human population; however, the molecular bases for the extraordinary virulence attributes of this pathogen are not well understood. We show here that LcrV, the cap protein of bacterial type III secretion needles, is modified by host glutathione and that this modification contributes to the high virulence of in mouse and rat models for bubonic plague. These data suggest that exploits glutathione in host tissues to activate a virulence strategy, thereby accelerating plague pathogenesis.
谷胱甘肽化,即谷胱甘肽与蛋白质半胱氨酸残基之间形成可逆的混合二硫键,是先前在细菌的细胞内蛋白中观察到的一种翻译后修饰。在这里,我们表明 III 型分泌机器顶端的分泌蛋白 LcrV 在半胱氨酸残基处发生谷胱甘肽化,这种修饰促进了与宿主核糖体蛋白 S3(RPS3)的结合,调节 III 型效应子的运输和巨噬细胞的杀伤,并增强了小鼠和大鼠中的败血性鼠疫的发病机制。通过质谱法对纯化的分泌型 LcrV 进行分析,揭示了谷胱甘肽化,这种修饰在 CysAla 取代时被消除。此外, 突变增强了动物在败血性鼠疫模型中的存活率。为了研究负责这些毒力特性的分子机制,我们确定了巨噬细胞 RPS3 是 LcrV 的配体,这种结合在 CysAla 取代时被打乱。此外,感染 变体的巨噬细胞显示出加速的凋亡死亡和减少的促炎细胞因子释放。谷胱甘肽合酶编码基因 的缺失导致细胞内谷胱甘肽水平无法检测,我们使用 Δ突变体来表征 LcrV 谷胱甘肽化的生化途径,确定 LcrV 通过与细胞外氧化谷胱甘肽形成二硫键,在被运送到 III 型针后被修饰。鼠疫是由 引起的,它导致了人类的大量死亡;然而,这种病原体非凡的毒力特性的分子基础尚不清楚。我们在这里表明,细菌 III 型分泌针的帽蛋白 LcrV 被宿主谷胱甘肽修饰,这种修饰有助于鼠疫在小鼠和大鼠败血性鼠疫模型中的高毒力。这些数据表明, 利用宿主组织中的谷胱甘肽来激活一种毒力策略,从而加速鼠疫的发病机制。