Suppr超能文献

减少、诱导、繁荣:发病过程中的细菌氧化还原感应。

Reduce, Induce, Thrive: Bacterial Redox Sensing during Pathogenesis.

机构信息

Department of Microbiology, University of Washington, Seattle, Washington, USA

出版信息

J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00128-18. Print 2018 Sep 1.

Abstract

The abundance of oxidants and reductants must be balanced for an organism to thrive. Bacteria have evolved methods to prevent redox imbalances and to mitigate their deleterious consequences through the expression of detoxification enzymes, antioxidants, and systems to repair or degrade damaged proteins and DNA. Regulating these processes in response to redox changes requires sophisticated surveillance strategies ranging from metal chelation to direct sensing of toxic reactive oxygen species. In the case of bacterial pathogens, stress that threatens to disrupt redox homeostasis can derive from endogenous sources (produced by the bacteria) or exogenous sources (produced by the host). This minireview summarizes the sources of redox stress encountered during infection, the mechanisms by which bacterial pathogens diminish the damaging effects of redox stress, and the clever ways some organisms have evolved to thrive in the face of redox challenges during infection.

摘要

为了使生物体茁壮成长,氧化剂和还原剂的含量必须保持平衡。细菌已经进化出各种方法来防止氧化还原失衡,并通过表达解毒酶、抗氧化剂以及修复或降解受损蛋白质和 DNA 的系统来减轻其有害后果。为了响应氧化还原变化调节这些过程,需要从金属螯合到直接感测有毒活性氧物质等复杂的监测策略。对于细菌病原体,威胁到氧化还原平衡的压力可能来自于内源性来源(由细菌产生)或外源性来源(由宿主产生)。这篇小综述总结了感染过程中遇到的氧化还原应激源、细菌病原体减轻氧化还原应激破坏性影响的机制,以及一些生物体在感染过程中面对氧化还原挑战时进化出的巧妙生存方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30a9/6088161/bb19df532d98/zjb9990948300001.jpg

相似文献

1
Reduce, Induce, Thrive: Bacterial Redox Sensing during Pathogenesis.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00128-18. Print 2018 Sep 1.
2
Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.
Arch Toxicol. 2016 Jan;90(1):1-37. doi: 10.1007/s00204-015-1579-5. Epub 2015 Sep 7.
3
Redox signaling in human pathogens.
Antioxid Redox Signal. 2011 Mar 15;14(6):1107-18. doi: 10.1089/ars.2010.3374. Epub 2010 Sep 17.
4
Microbial antioxidant defense enzymes.
Microb Pathog. 2017 Sep;110:56-65. doi: 10.1016/j.micpath.2017.06.015. Epub 2017 Jun 16.
5
Free radicals, metals and antioxidants in oxidative stress-induced cancer.
Chem Biol Interact. 2006 Mar 10;160(1):1-40. doi: 10.1016/j.cbi.2005.12.009. Epub 2006 Jan 23.
6
Antioxidants and HNE in redox homeostasis.
Free Radic Biol Med. 2017 Oct;111:87-101. doi: 10.1016/j.freeradbiomed.2016.11.033. Epub 2016 Nov 22.

引用本文的文献

1
A critical role for LPS to mediate evasion of host immune response during infection.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2426547122. doi: 10.1073/pnas.2426547122. Epub 2025 Aug 13.
2
CH•••S hydrogen bonds drive molecular recognition of ergothioneine by the microbial transporter.
bioRxiv. 2025 Jul 31:2025.07.28.667264. doi: 10.1101/2025.07.28.667264.
6
The Iron-Sulfur Cluster of Bacterioferritin-Associated Ferredoxin (Bfd): a "Biological Fuse" that Prevents Oxidative Damage to Cells?
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202511340. doi: 10.1002/anie.202511340. Epub 2025 Jun 25.
7
Stress-dependent activation of the virulence program ensures bacterial resilience during infection.
mBio. 2025 Jun 11;16(6):e0071925. doi: 10.1128/mbio.00719-25. Epub 2025 Apr 30.
8
Defense arsenal of the strict anaerobe against reactive oxygen species encountered during its infection cycle.
mBio. 2025 Apr 9;16(4):e0375324. doi: 10.1128/mbio.03753-24. Epub 2025 Mar 20.
9
Symbiotic T6SS affects horizontal transmission of among amoeba hosts.
ISME Commun. 2025 Jan 14;5(1):ycaf005. doi: 10.1093/ismeco/ycaf005. eCollection 2025 Jan.
10
Disinfectants and one health review: The role of reactive oxygen species in the bactericidal activity of chlorine against .
One Health. 2025 Feb 6;20:100989. doi: 10.1016/j.onehlt.2025.100989. eCollection 2025 Jun.

本文引用的文献

1
Chemotaxis Allows Bacteria To Overcome Host-Generated Reactive Oxygen Species That Constrain Gland Colonization.
Infect Immun. 2018 Apr 23;86(5). doi: 10.1128/IAI.00878-17. Print 2018 May.
2
Glutathionylation of LcrV and Its Effects on Plague Pathogenesis.
mBio. 2017 May 16;8(3):e00646-17. doi: 10.1128/mBio.00646-17.
3
SpxA1 and SpxA2 Act Coordinately To Fine-Tune Stress Responses and Virulence in .
mBio. 2017 Mar 28;8(2):e00288-17. doi: 10.1128/mBio.00288-17.
6
9
Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease.
FEMS Microbiol Rev. 2017 Mar 1;41(2):139-157. doi: 10.1093/femsre/fuw042.
10
Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14733-14738. doi: 10.1073/pnas.1614028114. Epub 2016 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验