Suppr超能文献

上游开放阅读框(uORF)介导的翻译可实现工程化植物抗病性且不产生适应性代价。

uORF-mediated translation allows engineered plant disease resistance without fitness costs.

作者信息

Xu Guoyong, Yuan Meng, Ai Chaoren, Liu Lijing, Zhuang Edward, Karapetyan Sargis, Wang Shiping, Dong Xinnian

机构信息

Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA.

National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China.

出版信息

Nature. 2017 May 25;545(7655):491-494. doi: 10.1038/nature22372. Epub 2017 May 17.

Abstract

Controlling plant disease has been a struggle for humankind since the advent of agriculture. Studies of plant immune mechanisms have led to strategies of engineering resistant crops through ectopic transcription of plants' own defence genes, such as the master immune regulatory gene NPR1 (ref. 1). However, enhanced resistance obtained through such strategies is often associated with substantial penalties to fitness, making the resulting products undesirable for agricultural applications. To remedy this problem, we sought more stringent mechanisms of expressing defence proteins. On the basis of our latest finding that translation of key immune regulators, such as TBF1 (ref. 3), is rapidly and transiently induced upon pathogen challenge (see accompanying paper), we developed a 'TBF1-cassette' consisting of not only the immune-inducible promoter but also two pathogen-responsive upstream open reading frames (uORFs) of the TBF1 gene. Here we demonstrate that inclusion of uORFs-mediated translational control over the production of snc1-1 (an autoactivated immune receptor) in Arabidopsis thaliana and AtNPR1 in rice enables us to engineer broad-spectrum disease resistance without compromising plant fitness in the laboratory or in the field. This broadly applicable strategy may lead to decreased pesticide use and reduce the selective pressure for resistant pathogens.

摘要

自农业出现以来,控制植物病害一直是人类面临的难题。对植物免疫机制的研究催生了通过异位转录植物自身防御基因来培育抗病作物的策略,比如主要的免疫调节基因NPR1(参考文献1)。然而,通过此类策略获得的增强抗性往往伴随着对适应性的严重不利影响,导致所得产品在农业应用中并不理想。为解决这一问题,我们探寻了更为严格的防御蛋白表达机制。基于我们最新的发现,即关键免疫调节因子(如TBF1,参考文献3)的翻译在病原体攻击后会迅速且短暂地被诱导(见随附论文),我们开发了一种“TBF1盒”,它不仅包含免疫诱导型启动子,还包含TBF1基因的两个病原体响应性上游开放阅读框(uORF)。在此,我们证明,在拟南芥中对snc1 - 1(一种自激活免疫受体)的产生以及在水稻中对AtNPR1的产生纳入uORF介导的翻译控制,使我们能够在实验室或田间培育出广谱抗病性且不影响植物适应性的作物。这种广泛适用的策略可能会减少农药使用,并降低对耐药病原体的选择压力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f532/5532539/4d6c3ed75157/nihms869899f4.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验