Suppr超能文献

提高经桡骨截肢患者手臂位置变化时实时肌电模式识别的鲁棒性。

Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.

机构信息

CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.

Institute of Biomedical and Health Engineering, SIAT, CAS, Shenzhen 518055, China.

出版信息

Biomed Res Int. 2017;2017:5090454. doi: 10.1155/2017/5090454. Epub 2017 Apr 24.

Abstract

Previous studies have showed that arm position variations would significantly degrade the classification performance of myoelectric pattern-recognition-based prosthetic control, and the cascade classifier (CC) and multiposition classifier (MPC) have been proposed to minimize such degradation in offline scenarios. However, it remains unknown whether these proposed approaches could also perform well in the clinical use of a multifunctional prosthesis control. In this study, the online effect of arm position variation on motion identification was evaluated by using a motion-test environment (MTE) developed to mimic the real-time control of myoelectric prostheses. The performance of different classifier configurations in reducing the impact of arm position variation was investigated using four real-time metrics based on dataset obtained from transradial amputees. The results of this study showed that, compared to the commonly used motion classification method, the CC and MPC configurations improved the real-time performance across seven classes of movements in five different arm positions (8.7% and 12.7% increments of motion completion rate, resp.). The results also indicated that high offline classification accuracy might not ensure good real-time performance under variable arm positions, which necessitated the investigation of the real-time control performance to gain proper insight on the clinical implementation of EMG-pattern-recognition-based controllers for limb amputees.

摘要

先前的研究表明,手臂位置的变化会显著降低基于肌电模式识别的假肢控制的分类性能,为此提出了级联分类器 (CC) 和多位置分类器 (MPC) 来最小化离线场景中的这种降级。然而,尚不清楚这些提出的方法是否也能在多功能假肢控制的临床应用中表现良好。在这项研究中,通过使用运动测试环境 (MTE) 来模拟肌电假肢的实时控制,评估了手臂位置变化对运动识别的在线影响。使用基于桡骨截肢患者数据集获得的四个实时指标,研究了不同分类器配置在减少手臂位置变化影响方面的性能。研究结果表明,与常用的运动分类方法相比,CC 和 MPC 配置在五个不同手臂位置的七种运动类别的实时性能方面均有提高(运动完成率分别提高了 8.7%和 12.7%)。结果还表明,离线分类精度高并不一定能保证在可变手臂位置下的实时性能,因此需要研究实时控制性能,以便深入了解肌电模式识别控制器在肢体截肢患者中的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/430b/5421097/1da8e1891bd7/BMRI2017-5090454.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验