Angarica Vladimir Espinosa, Del Sol Antonio
Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4366 Belvaux, Luxembourg.
Adv Exp Med Biol. 2017;978:489-512. doi: 10.1007/978-3-319-53889-1_25.
Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.
表观遗传学在许多重要细胞过程的调控中起着核心作用,表观遗传水平的失调可能是严重病理状况的根源,如影响大脑发育的神经疾病、神经退行性变和智力残疾。尽管表观遗传谱分析技术取得了重大进展,但仍需要系统地了解表观遗传学如何塑造细胞回路以及疾病发病机制。开发用于分析复杂表观遗传谱的精确计算方法对于阐明细胞发育的潜在机制以及确定和感知染色质修饰与DNA甲基化以控制基因表达的复杂相互作用网络至关重要。在本章中,我们回顾了“计算表观遗传学”领域的最新进展,包括处理不同类型表观遗传数据的计算方法、染色质状态预测以及蛋白质动力学研究。我们还讨论了“计算表观遗传学”如何补充表观遗传数据生成方面的快速增长,以揭示个体间表观遗传水平的主要差异和相似之处以及疾病发生和进展的潜在机制。