Šillerová Hana, Chrastný Vladislav, Vítková Martina, Francová Anna, Jehlička Jan, Gutsch Marissa R, Kocourková Jana, Aspholm Paul E, Nilsson Lars O, Berglen Tore F, Jensen Henning K B, Komárek Michael
Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
Environ Pollut. 2017 Sep;228:149-157. doi: 10.1016/j.envpol.2017.05.030. Epub 2017 May 18.
The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δNi (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δCu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δNi and δCu values determined in the smelter, i.e. in feeding material and slag (δNi from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δCu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δNi up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δCu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.
由于关于影响稳定同位素分馏的各种生物地球化学过程的影响信息有限,利用镍和铜同位素追踪环境中的污染源仍然是一项具有挑战性的任务。这项工作聚焦于挪威东北部一个相对简单的系统,该系统有两个可能的端元(冶炼厂 - 基岩)和各种环境样本(雪、土壤、地衣、颗粒物)。总体而言,整个区域镍和铜的重同位素富集,突出了冶炼活动的影响。然而,环境样本呈现出大范围的δNi值(-0.01±0.03‰至1.71±0.02‰)和δCu值(-0.06±0.06‰至 -3.94±0.3‰),超出了在冶炼厂中测定的δNi和δCu值范围,即在进料和炉渣中的范围(δNi从0.56±0.06‰至1.00±0.06‰,δCu从 -1.67±0.04‰至 -1.68±0.15‰)。在镍的情况下,向较重的镍δ值的转变在富含有机质的表层土壤样本中最为显著(δNi高达1.71±0.02‰);在铜的情况下,在苔藓和雪中最为显著(δCu分别高达 -0.06±0.06‰和 -0.24±0.04‰)。这些数据表明镍和铜同位素存在重要的生物和生物化学分馏(微生物和/或高等植物对金属的吸收、有机络合等),对于每个过程都应分别进行量化,并在使用稳定同位素追踪环境中的污染时加以考虑。