Suppr超能文献

基于健康状态建模,迈向慢性病的系统方法。

Towards a systems approach for chronic diseases, based on health state modeling.

作者信息

Rebhan Michael

机构信息

Novartis Institutes for Biomedical Research, Basel, 4056, Switzerland.

出版信息

F1000Res. 2017 Mar 23;6:309. doi: 10.12688/f1000research.11085.1. eCollection 2017.

Abstract

Rising pressure from chronic diseases means that we need to learn how to deal with challenges at a different level, including the use of that better connect across fragments, such as disciplines, stakeholders, institutions, and technologies. By learning from progress in leading areas of health innovation (including oncology and AIDS), as well as complementary indications (Alzheimer's disease), I try to extract the most enabling innovation paradigms, and discuss their extension to additional areas of application within a . To facilitate such work, a Precision, P4 or Systems Medicine platform is proposed, which is centered on the representation of that enable the definition of time in the vision to provide Modeling of such should allow iterative optimization, as longitudinal human data accumulate. This platform is designed to facilitate the discovery of links between opportunities related to a) the modernization of diagnosis, including the increased use of omics profiling, b) patient-centric approaches enabled by , including and connected devices, c) increasing understanding of the pathobiological, clinical and health economic aspects of disease progression stages, d) design of new interventions, including therapies as well as preventive measures, including sequential intervention approaches. Probabilistic of health states, e.g. those used for health economic analysis, are discussed as a simple starting point for the platform. A path towards extension into other indications, data types and uses is discussed, with a focus on and relevant pathobiology.

摘要

慢性病带来的压力不断增加,这意味着我们需要学习如何在不同层面应对挑战,包括运用那些能更好地跨领域连接的方法,比如跨学科、利益相关者、机构和技术。通过借鉴健康创新前沿领域(包括肿瘤学和艾滋病领域)以及相关适应症(阿尔茨海默病)的进展,我试图提炼出最具推动作用的创新模式,并讨论它们在一个框架内扩展到其他应用领域的情况。为便于开展此类工作,提出了一个精准医学、P4医学或系统医学平台,该平台以能够在愿景中定义时间以提供的表示为核心。随着纵向人类数据的积累,对此类表示的建模应允许进行迭代优化。该平台旨在促进发现与以下方面相关的机会之间的联系:a)诊断现代化,包括增加组学分析的使用;b)由包括和连接设备在内的以患者为中心的方法;c)对疾病进展阶段的病理生物学、临床和健康经济方面的理解不断加深;d)新干预措施的设计,包括治疗方法以及预防措施,包括序贯干预方法。健康状态的概率模型,例如用于健康经济分析的模型,作为该平台的一个简单起点进行了讨论。还讨论了扩展到其他适应症、数据类型和用途的途径,重点是和相关病理生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c57/5419256/bd2e2d0f63a7/f1000research-6-11956-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验