Department of Applied Science and Technology, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy.
Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia , Corso Trento 21, Torino 10129, Italy.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19193-19201. doi: 10.1021/acsami.7b04030. Epub 2017 May 30.
In this study, we show for the first time the production of mass-sensitive polymeric biosensors by 3D printing technology with intrinsic functionalities. We also demonstrate the feasibility of mass-sensitive biosensors in the form of microcantilever in a one-step printing process, using acrylic acid as functional comonomer for introducing a controlled amount of functional groups that can covalently immobilize the biomolecules onto the polymer. The effectiveness of the application of 3D printed microcantilevers as biosensors is then demonstrated with their implementation in a standard immunoassay protocol. This study shows how 3D microfabrication techniques, material characterization, and biosensor development could be combined to obtain an engineered polymeric microcantilever with intrinsic functionalities. The possibility of tuning the composition of the starting photocurable resin with the addition of functional agents, and consequently controlling the functionalities of the 3D printed devices, paves the way to a new class of mass-sensing microelectromechanical system devices with intrinsic properties.
在这项研究中,我们首次展示了具有固有功能的 3D 打印技术生产质量敏感型聚合物生物传感器。我们还展示了在一步打印过程中以微悬臂梁形式的质量敏感生物传感器的可行性,使用丙烯酸作为功能共聚单体来引入一定量的功能基团,这些功能基团可以将生物分子共价固定在聚合物上。通过将 3D 打印微悬臂梁应用于标准免疫测定方案,证明了其作为生物传感器的有效性。本研究展示了如何将 3D 微制造技术、材料特性和生物传感器开发结合起来,获得具有固有功能的工程化聚合物微悬臂梁。通过添加功能试剂来调整起始光固化树脂的组成,并因此控制 3D 打印器件的功能,为具有固有特性的新型质量敏感微机电系统器件开辟了道路。