Gonzalez-Obeso Elvira, Docio Inmaculada, Olea Elena, Cogolludo Angel, Obeso Ana, Rocher Asuncion, Gomez-Niño Angela
Servicio de Anatomía Patológica, Hospital Clínico Universitario de ValladolidValladolid, Spain.
Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, IBGM, CSICValladolid, Spain.
Front Physiol. 2017 May 8;8:285. doi: 10.3389/fphys.2017.00285. eCollection 2017.
Mammals have developed different mechanisms to maintain oxygen supply to cells in response to hypoxia. One of those mechanisms, the carotid body (CB) chemoreceptors, is able to detect physiological hypoxia and generate homeostatic reflex responses, mainly ventilatory and cardiovascular. It has been reported that guinea pigs, originally from the Andes, have a reduced ventilatory response to hypoxia compared to other mammals, implying that CB are not completely functional, which has been related to genetically/epigenetically determined poor hypoxia-driven CB reflex. This study was performed to check the guinea pig CB response to hypoxia compared to the well-known rat hypoxic response. These experiments have explored ventilatory parameters breathing different gases mixtures, cardiovascular responses to acute hypoxia, CB response to hypoxia and other stimuli and isolated guinea pig chemoreceptor cells properties. Our findings show that guinea pigs are hypotensive and have lower arterial pO than rats, probably related to a low sympathetic tone and high hemoglobin affinity. Those characteristics could represent a higher tolerance to hypoxic environment than other rodents. We also find that although CB are hypo-functional not showing chronic hypoxia sensitization, a small percentage of isolated carotid body chemoreceptor cells contain tyrosine hydroxylase enzyme and voltage-dependent K currents and therefore can be depolarized. However hypoxia does not modify intracellular Ca levels or catecholamine secretion. Guinea pigs are able to hyperventilate only in response to intense acute hypoxic stimulus, but hypercapnic response is similar to rats. Whether other brain areas are also activated by hypoxia in guinea pigs remains to be studied.
哺乳动物已经发展出不同的机制来应对缺氧,以维持细胞的氧气供应。其中一种机制是颈动脉体(CB)化学感受器,它能够检测生理性缺氧并产生稳态反射反应,主要是呼吸和心血管方面的反应。据报道,原产于安第斯山脉的豚鼠与其他哺乳动物相比,对缺氧的呼吸反应有所降低,这意味着颈动脉体功能并不完全正常,这与基因/表观遗传决定的缺氧驱动的颈动脉体反射不佳有关。本研究旨在检查豚鼠颈动脉体对缺氧的反应,并与著名的大鼠缺氧反应进行比较。这些实验探讨了呼吸不同气体混合物时的通气参数、急性缺氧时的心血管反应、颈动脉体对缺氧和其他刺激的反应以及分离的豚鼠化学感受器细胞的特性。我们的研究结果表明,豚鼠血压较低,动脉血氧分压低于大鼠,这可能与交感神经张力低和血红蛋白亲和力高有关。这些特征可能表明豚鼠比其他啮齿动物对缺氧环境具有更高的耐受性。我们还发现,尽管颈动脉体功能低下,未表现出慢性缺氧敏感性,但一小部分分离的颈动脉体化学感受器细胞含有酪氨酸羟化酶和电压依赖性钾电流,因此可以发生去极化。然而,缺氧并不会改变细胞内钙水平或儿茶酚胺分泌。豚鼠仅在对强烈的急性缺氧刺激作出反应时才会过度通气,但对高碳酸血症的反应与大鼠相似。豚鼠的其他脑区是否也会被缺氧激活仍有待研究。