Xie Da, Kim Seyong, Kohli Vikraant, Banerjee Arnab, Yu Meng, Enriquez José S, Luci Jeffrey J, Que Emily L
Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States.
Department of Neuroscience, The University of Texas at Austin , Austin, Texas 78712, United States.
Inorg Chem. 2017 Jun 5;56(11):6429-6437. doi: 10.1021/acs.inorgchem.7b00500. Epub 2017 May 24.
F magnetic resonance imaging (MRI), an emerging modality in biomedical imaging, has shown promise for in vitro and in vivo preclinical studies. Here we present a series of fluorinated Cu(II)ATSM derivatives for potential use as F magnetic resonance agents for sensing cellular hypoxia. The synthesized complexes feature a hypoxia-targeting Cu coordination core, nine equivalent fluorine atoms connected via a variable-length poly(ethylene glycol) linker. Introduction of the fluorine moiety maintains the planar coordination geometry of the Cu center, while the linker length modulates the Cu reduction potential, F NMR relaxation properties, and lipophilicity. In particular, the F NMR relaxation properties were quantitatively evaluated by the Solomon-Bloembergen model, revealing a regular pattern of relaxation enhancement tuned by the distance between Cu and F atoms. Finally, the potential utility of these complexes for sensing reductive environments was demonstrated using both F MR phantom imaging and F NMR, including experiments in intact live cells.
19F磁共振成像(MRI)作为生物医学成像领域一种新兴的模态,已在体外和体内临床前研究中展现出应用前景。在此,我们展示了一系列氟化Cu(II)ATSM衍生物,它们有潜力用作检测细胞缺氧的19F磁共振试剂。合成的配合物具有一个靶向缺氧的铜配位核心,九个等效氟原子通过可变长度的聚乙二醇连接基相连。氟部分的引入保持了铜中心的平面配位几何结构,而连接基长度则调节铜的还原电位、19F NMR弛豫特性和亲脂性。特别是,通过所罗门 - 布洛姆伯根模型对19F NMR弛豫特性进行了定量评估,揭示了由铜和氟原子之间的距离调节的弛豫增强规律模式。最后,使用19F MR体模成像和19F NMR证明了这些配合物在检测还原环境方面的潜在效用,包括在完整活细胞中的实验。