Suppr超能文献

水平可见性图转移熵(HVG-TE):一种用于表征大规模脑网络中定向连通性的新指标。

Horizontal visibility graph transfer entropy (HVG-TE): A novel metric to characterize directed connectivity in large-scale brain networks.

作者信息

Yu Meichen, Hillebrand Arjan, Gouw Alida A, Stam Cornelis J

机构信息

Department of Clinical Neurophysiology & MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.

Department of Clinical Neurophysiology & MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

Neuroimage. 2017 Aug 1;156:249-264. doi: 10.1016/j.neuroimage.2017.05.047. Epub 2017 May 21.

Abstract

We propose a new measure, horizontal visibility graph transfer entropy (HVG-TE), to estimate the direction of information flow between pairs of time series. HVG-TE quantifies the transfer entropy between the degree sequences of horizontal visibility graphs derived from original time series. Twenty-one Rössler attractors unidirectionally coupled in the posterior-to-anterior direction were used to simulate 21-channel Electroencephalography (EEG) brain networks and validate the performance of the HVG-TE. We showed that the HVG-TE is robust to different levels of coupling strengths between the coupled Rössler attractors, a wide range of time delays, different sample sizes, the effects of noise and linear mixing, and the choice of reference for EEG data. We also applied HVG-TE to EEG data in 20 healthy controls and compared its performance to a recently introduces phase-based TE measure (PTE). We found that compared with PTE, HVG-TE consistently detected stronger posterior-to-anterior information flow patterns in the alpha-band (8-13Hz) EEG brain networks for three different references. Moreover, in contrast to PTE, HVG-TE does not require an assumption on the periodicity of input signals, therefore it can be more widely applicable, even for non-periodic signals. This study shows that the HVG-TE is a directed connectivity measure to characterise the direction of information flow in large-scale brain networks.

摘要

我们提出了一种新的度量方法,即水平可见性图转移熵(HVG-TE),用于估计时间序列对之间的信息流方向。HVG-TE量化了从原始时间序列导出的水平可见性图的度序列之间的转移熵。使用21个在前后方向上单向耦合的罗塞尔吸引子来模拟21通道脑电图(EEG)脑网络,并验证HVG-TE的性能。我们表明,HVG-TE对于耦合的罗塞尔吸引子之间不同水平的耦合强度、广泛的时间延迟、不同的样本大小、噪声和线性混合的影响以及EEG数据参考的选择具有鲁棒性。我们还将HVG-TE应用于20名健康对照者的EEG数据,并将其性能与最近引入的基于相位的转移熵度量(PTE)进行比较。我们发现,与PTE相比,对于三种不同的参考,HVG-TE在α波段(8-13Hz)EEG脑网络中始终检测到更强的前后向信息流模式。此外,与PTE不同,HVG-TE不需要对输入信号的周期性进行假设,因此它可以更广泛地适用,甚至对于非周期性信号也是如此。这项研究表明,HVG-TE是一种用于表征大规模脑网络中信息流方向的定向连接性度量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验