Xie Jinyu, Wang Qian
IEEE Trans Biomed Eng. 2017 Jun;64(6):1249-1260. doi: 10.1109/TBME.2016.2599073.
This paper aims to develop an algorithm that can detect unannounced meals and estimate meal sizes to achieve a robust glucose control.
A variable state dimension (VSD) algorithm is developed to detect unannounced meals and estimate meal sizes, where a Kalman filter operates on a quiescent state model when no meal is detected, and switches to a maneuvering state model to estimate meal information once the meal-induced glucose variability is statistically significant.
Through evaluation using 30 subjects of the UVa/Padova simulator, a basal-bolus (BB) control using the VSD-estimated meal size for each meal can achieve mean blood glucose (BG) of 142 mg/dl with an average 17.7% of time in hypoglycemia. In terms of 20 Monte-Carlo simulations for each subject over a two-day scenario, where each meal/snack has a probability of 0.5 not to be announced, the BB control using VSD for unannounced meals can achieve an average mean BG of 143 mg/dl with 8% of time in hypoglycemia, in contrast to mean BG of 180 mg/dl with 8% of time in hypoglycemia obtained by BB with missing boluses. Additionally, VSD is able to detect a meal within 45 (±14) min since its start with a 76% success rate and 16% false alarm rate.
The addition of VSD to the BB control improves glucose control when meal announcements are missed.
The VSD can be used as a complementary tool to detect meal and estimate meal size in absence of a meal announcement.
本文旨在开发一种算法,该算法能够检测未宣布的进餐情况并估计进餐量,以实现稳健的血糖控制。
开发了一种可变状态维度(VSD)算法来检测未宣布的进餐情况并估计进餐量,其中当未检测到进餐后,卡尔曼滤波器在静态状态模型上运行,一旦进餐引起的血糖变异性在统计学上具有显著性,就切换到机动状态模型来估计进餐信息。
通过使用弗吉尼亚大学/帕多瓦模拟器的30名受试者进行评估,使用VSD估计每餐进餐量的基础-大剂量(BB)控制可使平均血糖(BG)达到142mg/dl,低血糖时间平均为17.7%。在为期两天的场景中,对每个受试者进行20次蒙特卡洛模拟,其中每餐/零食有0.5的概率未被宣布,使用VSD处理未宣布进餐情况的BB控制可使平均BG达到143mg/dl,低血糖时间为8%,相比之下,未注射大剂量胰岛素的BB控制获得的平均BG为180mg/dl,低血糖时间为8%。此外,VSD能够在进餐开始后45(±14)分钟内检测到进餐,成功率为76%,误报率为16%。
在BB控制中添加VSD可在错过进餐通知时改善血糖控制。
在没有进餐通知的情况下,VSD可作为检测进餐和估计进餐量的补充工具。