Suppr超能文献

概率性动态进餐检测与进餐总葡萄糖出现量的估计

Probabilistic evolving meal detection and estimation of meal total glucose appearance.

作者信息

Cameron Fraser, Niemeyer Günter, Buckingham Bruce A

机构信息

Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305, USA.

出版信息

J Diabetes Sci Technol. 2009 Sep 1;3(5):1022-30. doi: 10.1177/193229680900300505.

Abstract

BACKGROUND

Automatic compensation of meals for type 1 diabetes patients will require meal detection from continuous glucose monitor (CGM) readings. This is challenged by the uncertainty and variability inherent to the digestion process and glucose dynamics as well as the lag and noise associated with CGM sensors. Thus any estimation of meal start time, size, and shape is fundamentally uncertain. This uncertainty can be reduced, but not eliminated, by estimating total glucose appearance and using new readings as they become available.

METHOD

In this article, we propose a probabilistic, evolving method to detect the presence and estimate the shape and total glucose appearance of a meal. The method is unique in continually evolving its estimates and simultaneously providing uncertainty measures to monitor their convergence. The algorithm operates in three phases. First, it compares the CGM signal to no-meal predictions made by a simple insulin-glucose model. Second, it fits the residuals to potential, assumed meal shapes. Finally, it compares and combines these fits to detect any meals and estimate the meal total glucose appearance, shape, and total glucose appearance uncertainty.

RESULTS

We validate the performance of this meal detection and total glucose appearance estimation algorithm both separately and in cooperation with a controller on the Food and Drug Administration-approved University of Virginia/Padova Type I Diabetes Simulator. In cooperation with a controller, the algorithm reduced the mean blood glucose from 137 to 132 mg/dl over 1.5 days of control without any increased hypoglycemia.

CONCLUSION

This novel, extensible meal detection and total glucose appearance estimation method shows the feasibility, relevance, and performance of evolving estimates with explicit uncertainty measures for use in closed-loop control of type 1 diabetes.

摘要

背景

1型糖尿病患者的进餐自动补偿需要从连续血糖监测(CGM)读数中检测进餐情况。这受到消化过程和葡萄糖动态固有的不确定性和变异性以及与CGM传感器相关的滞后和噪声的挑战。因此,对进餐开始时间、大小和形状的任何估计从根本上来说都是不确定的。通过估计总葡萄糖出现量并在新读数可用时使用它们,可以减少但不能消除这种不确定性。

方法

在本文中,我们提出了一种概率性的、不断演进的方法来检测进餐的存在并估计进餐的形状和总葡萄糖出现量。该方法的独特之处在于不断演进其估计值,并同时提供不确定性度量以监测其收敛情况。该算法分三个阶段运行。首先,它将CGM信号与一个简单的胰岛素 - 葡萄糖模型做出的无进餐预测进行比较。其次,它将残差拟合到潜在的、假定的进餐形状。最后,它比较并结合这些拟合结果以检测任何进餐情况,并估计进餐的总葡萄糖出现量、形状以及总葡萄糖出现量的不确定性。

结果

我们分别以及与一个控制器配合,在食品药品监督管理局批准的弗吉尼亚大学/帕多瓦1型糖尿病模拟器上验证了这种进餐检测和总葡萄糖出现量估计算法的性能。与一个控制器配合使用时,该算法在1.5天的控制过程中将平均血糖从137降至132mg/dl,且没有增加低血糖情况。

结论

这种新颖的、可扩展的进餐检测和总葡萄糖出现量估计方法显示了用于1型糖尿病闭环控制的、带有明确不确定性度量的不断演进估计的可行性、相关性和性能。

相似文献

1
Probabilistic evolving meal detection and estimation of meal total glucose appearance.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1022-30. doi: 10.1177/193229680900300505.
4
Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1091-8. doi: 10.1177/193229680900300512.
5
Inpatient trial of an artificial pancreas based on multiple model probabilistic predictive control with repeated large unannounced meals.
Diabetes Technol Ther. 2014 Nov;16(11):728-34. doi: 10.1089/dia.2014.0093. Epub 2014 Sep 26.
6
A closed-loop artificial pancreas using model predictive control and a sliding meal size estimator.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1082-90. doi: 10.1177/193229680900300511.
7
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
8
A novel adaptive basal therapy based on the value and rate of change of blood glucose.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1099-108. doi: 10.1177/193229680900300513.
9
Identification of intraday metabolic profiles during closed-loop glucose control in individuals with type 1 diabetes.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1047-57. doi: 10.1177/193229680900300508.
10
Experimental evaluation of a recursive model identification technique for type 1 diabetes.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1192-202. doi: 10.1177/193229680900300526.

引用本文的文献

3
Insulin Delivery Hardware: Pumps and Pens.
Diabetes Technol Ther. 2023 Feb;25(S1):S30-S43. doi: 10.1089/dia.2023.2503.
6
A Multiple Hypothesis Approach to Estimating Meal Times in Individuals With Type 1 Diabetes.
J Diabetes Sci Technol. 2021 Jan;15(1):141-146. doi: 10.1177/1932296819883267. Epub 2019 Oct 22.
7
Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement.
J Diabetes Sci Technol. 2019 Nov;13(6):1035-1043. doi: 10.1177/1932296819864585. Epub 2019 Jul 24.
9
Unannounced Meals in the Artificial Pancreas: Detection Using Continuous Glucose Monitoring.
Sensors (Basel). 2018 Mar 16;18(3):884. doi: 10.3390/s18030884.
10
Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System.
Diabetes Technol Ther. 2018 Mar;20(3):235-246. doi: 10.1089/dia.2017.0364. Epub 2018 Feb 6.

本文引用的文献

1
Coordinated basal-bolus infusion for tighter postprandial glucose control in insulin pump therapy.
J Diabetes Sci Technol. 2009 Jan;3(1):89-97. doi: 10.1177/193229680900300110.
2
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.
3
Translating the A1C assay into estimated average glucose values.
Diabetes Care. 2008 Aug;31(8):1473-8. doi: 10.2337/dc08-0545. Epub 2008 Jun 7.
4
Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell.
Diabetes Care. 2008 Feb;31(2):295-300. doi: 10.2337/dc07-1293. Epub 2007 Oct 31.
6
A system model of oral glucose absorption: validation on gold standard data.
IEEE Trans Biomed Eng. 2006 Dec;53(12 Pt 1):2472-8. doi: 10.1109/TBME.2006.883792.
7
Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes.
N Engl J Med. 2005 Dec 22;353(25):2643-53. doi: 10.1056/NEJMoa052187.
8
Graphical human insulin time-activity profiles using standardized definitions.
Diabetes Technol Ther. 2001 Fall;3(3):419-29. doi: 10.1089/15209150152607204.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验