Genetics of Biofilms Laboratory, Institut Pasteur, UMR CNRS2001, Paris, France.
Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, CNRS FRE2032, 75005, Paris, France.
NPJ Biofilms Microbiomes. 2021 Apr 13;7(1):34. doi: 10.1038/s41522-021-00203-w.
Communities of bacteria called biofilms are characterized by reduced diffusion, steep oxygen, and redox gradients and specific properties compared to individualized planktonic bacteria. In this study, we investigated whether signaling via nitrosylation of protein cysteine thiols (S-nitrosylation), regulating a wide range of functions in eukaryotes, could also specifically occur in biofilms and contribute to bacterial adaptation to this widespread lifestyle. We used a redox proteomic approach to compare cysteine S-nitrosylation in aerobic and anaerobic biofilm and planktonic Escherichia coli cultures and we identified proteins with biofilm-specific S-nitrosylation status. Using bacterial genetics and various phenotypic screens, we showed that impairing S-nitrosylation in proteins involved in redox homeostasis and amino acid synthesis such as OxyR, KatG, and GltD altered important biofilm properties, including motility, biofilm maturation, or resistance to oxidative stress. Our study therefore revealed that S-nitrosylation constitutes a physiological basis underlying functions critical for E. coli adaptation to the biofilm environment.
被称为生物膜的细菌群落的特征是扩散减少,氧气和氧化还原梯度陡峭,与个体浮游细菌相比具有特定的性质。在这项研究中,我们研究了通过蛋白质半胱氨酸巯基的硝化(S-硝化)信号转导是否也可以特异性地发生在生物膜中,并有助于细菌适应这种广泛存在的生活方式。我们使用氧化还原蛋白质组学方法比较了需氧和厌氧生物膜和浮游大肠杆菌培养物中半胱氨酸 S-硝化,并鉴定了具有生物膜特异性 S-硝化状态的蛋白质。通过细菌遗传学和各种表型筛选,我们表明,破坏参与氧化还原稳态和氨基酸合成的蛋白质中的 S-硝化,如 OxyR、KatG 和 GltD,会改变重要的生物膜特性,包括运动性、生物膜成熟或对氧化应激的抗性。因此,我们的研究表明,S-硝化构成了大肠杆菌适应生物膜环境的关键功能的生理基础。