Suppr超能文献

心血管疾病患者肌肉减少症的新诊断指标。

New diagnostic index for sarcopenia in patients with cardiovascular diseases.

作者信息

Harada Haruhito, Kai Hisashi, Shibata Rei, Niiyama Hiroshi, Nishiyama Yasuhiro, Murohara Toyoaki, Yoshida Noriko, Katoh Atsushi, Ikeda Hisao

机构信息

Department of Cardiology, Kurume University Medical Center, Kurume, Japan.

Department of Advanced Cardiovascular Therapeutics, Nagoya University, Nagoya, Japan.

出版信息

PLoS One. 2017 May 18;12(5):e0178123. doi: 10.1371/journal.pone.0178123. eCollection 2017.

Abstract

BACKGROUND

Sarcopenia is an aging and disease-related syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, with the risk of frailty and poor quality of life. Sarcopenia is diagnosed by a decrease in skeletal muscle index (SMI) and reduction of either handgrip strength or gait speed. However, measurement of SMI is difficult for general physicians because it requires special equipment for bioelectrical impedance assay or dual-energy X-ray absorptiometry. The purpose of this study was, therefore, to explore a novel, simple diagnostic method of sarcopenia evaluation in patients with cardiovascular diseases (CVD).

METHODS

We retrospectively investigated 132 inpatients with CVD (age: 72±12 years, age range: 27-93 years, males: 61%) Binomial logistic regression and correlation analyses were used to assess the associations of sarcopenia with simple physical data and biomarkers, including muscle-related inflammation makers and nutritional markers.

RESULTS

Sarcopenia was present in 29.5% of the study population. Serum concentrations of adiponectin and sialic acid were significantly higher in sarcopenic than non-sarcopenic CVD patients. Stepwise multivariate binomial logistic regression analysis revealed that adiponectin, sialic acid, sex, age, and body mass index were independent factors for sarcopenia detection. Sarcopenia index, obtained from the diagnostic regression formula for sarcopenia detection including the five independent factors, indicated a high accuracy in ROC curve analysis (sensitivity 94.9%, specificity 69.9%) and the cutoff value for sarcopenia detection was -1.6134. Sarcopenia index had a significant correlation with the conventional diagnostic parameters of sarcopenia.

CONCLUSIONS

Our new sarcopenia index using simple parameters would be useful for diagnosing sarcopenia in CVD patients.

摘要

背景

肌肉减少症是一种与衰老和疾病相关的综合征,其特征是骨骼肌质量和力量进行性、全身性丧失,存在虚弱和生活质量差的风险。肌肉减少症通过骨骼肌指数(SMI)降低以及握力或步速降低来诊断。然而,普通医生难以测量SMI,因为这需要用于生物电阻抗分析或双能X线吸收法的特殊设备。因此,本研究的目的是探索一种用于评估心血管疾病(CVD)患者肌肉减少症的新型、简单的诊断方法。

方法

我们回顾性调查了132例CVD住院患者(年龄:72±12岁,年龄范围:27 - 93岁,男性:61%)。采用二项逻辑回归和相关性分析来评估肌肉减少症与简单身体数据和生物标志物之间的关联,包括肌肉相关炎症标志物和营养标志物。

结果

研究人群中29.5%存在肌肉减少症。肌肉减少症的CVD患者血清脂联素和唾液酸浓度显著高于非肌肉减少症患者。逐步多变量二项逻辑回归分析显示,脂联素、唾液酸、性别、年龄和体重指数是检测肌肉减少症的独立因素。从包括这五个独立因素的肌肉减少症检测诊断回归公式得出的肌肉减少症指数,在ROC曲线分析中显示出高准确性(敏感性94.9%,特异性69.9%),肌肉减少症检测的临界值为 -1.6134。肌肉减少症指数与肌肉减少症的传统诊断参数具有显著相关性。

结论

我们使用简单参数的新肌肉减少症指数将有助于诊断CVD患者的肌肉减少症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd25/5436875/7c7997c832b9/pone.0178123.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验