Jacob Kristin, Rasmussen Anna, Tyler Paul, Servos Mariah M, Sylla Mariame, Prado Cecilia, Daniele Elizabeth, Sharp Josh S, Purdy Alexandra E
Department of Biology, Northern Michigan University, Marquette, Michigan, United States of America.
Department of Biology, Amherst College, Amherst, Massachusetts, United States of America.
PLoS One. 2017 May 18;12(5):e0177825. doi: 10.1371/journal.pone.0177825. eCollection 2017.
The CrbS/R two-component signal transduction system is a conserved regulatory mechanism through which specific Gram-negative bacteria control acetate flux into primary metabolic pathways. CrbS/R governs expression of acetyl-CoA synthase (acsA), an enzyme that converts acetate to acetyl-CoA, a metabolite at the nexus of the cell's most important energy-harvesting and biosynthetic reactions. During infection, bacteria can utilize this system to hijack host acetate metabolism and alter the course of colonization and pathogenesis. In toxigenic strains of Vibrio cholerae, CrbS/R-dependent expression of acsA is required for virulence in an arthropod model. Here, we investigate the function of the CrbS/R system in Pseudomonas aeruginosa, Pseudomonas entomophila, and non-toxigenic V. cholerae strains. We demonstrate that its role in acetate metabolism is conserved; this system regulates expression of the acsA gene and is required for growth on acetate as a sole carbon source. As a first step towards describing the mechanism of signaling through this pathway, we identify residues and domains that may be critical for phosphotransfer. We further demonstrate that although CrbS, the putative hybrid sensor kinase, carries both a histidine kinase domain and a receiver domain, the latter is not required for acsA transcription. In order to determine whether our findings are relevant to pathogenesis, we tested our strains in a Drosophila model of oral infection previously employed for the study of acetate-dependent virulence by V. cholerae. We show that non-toxigenic V. cholerae strains lacking CrbS or CrbR are significantly less virulent than are wild-type strains, while P. aeruginosa and P. entomophila lacking CrbS or CrbR are fully pathogenic. Together, the data suggest that the CrbS/R system plays a central role in acetate metabolism in V. cholerae, P. aeruginosa, and P. entomophila. However, each microbe's unique environmental adaptations and pathogenesis strategies may dictate conditions under which CrbS/R-mediated acs expression is most critical.
CrbS/R双组分信号转导系统是一种保守的调控机制,特定的革兰氏阴性菌通过该机制控制乙酸盐流入初级代谢途径。CrbS/R调控乙酰辅酶A合成酶(acsA)的表达,该酶可将乙酸盐转化为乙酰辅酶A,乙酰辅酶A是细胞最重要的能量获取和生物合成反应枢纽处的一种代谢物。在感染过程中,细菌可利用该系统劫持宿主乙酸盐代谢,改变定植和致病进程。在产毒性霍乱弧菌菌株中,acsA的CrbS/R依赖性表达是节肢动物模型中毒力所必需的。在此,我们研究了CrbS/R系统在铜绿假单胞菌、嗜虫假单胞菌和非产毒性霍乱弧菌菌株中的功能。我们证明其在乙酸盐代谢中的作用是保守的;该系统调控acsA基因的表达,并且是在以乙酸盐作为唯一碳源的条件下生长所必需的。作为描述通过该途径进行信号传导机制的第一步,我们确定了可能对磷酸转移至关重要的残基和结构域。我们进一步证明,尽管假定的杂交传感激酶CrbS同时具有组氨酸激酶结构域和受体结构域,但后者对于acsA转录并非必需。为了确定我们的发现是否与致病机制相关,我们在先前用于研究霍乱弧菌乙酸盐依赖性毒力的果蝇口腔感染模型中对我们的菌株进行了测试。我们表明,缺乏CrbS或CrbR的非产毒性霍乱弧菌菌株的毒力明显低于野生型菌株,而缺乏CrbS或CrbR的铜绿假单胞菌和嗜虫假单胞菌则具有完全致病性。总之,数据表明CrbS/R系统在霍乱弧菌、铜绿假单胞菌和嗜虫假单胞菌的乙酸盐代谢中起核心作用。然而,每种微生物独特的环境适应性和致病策略可能决定了CrbS/R介导的acs表达最为关键的条件。