Suppr超能文献

超越范式:质谱与核磁共振联用的代谢组学研究

Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics.

作者信息

Marshall Darrell D, Powers Robert

机构信息

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States.

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States.

出版信息

Prog Nucl Magn Reson Spectrosc. 2017 May;100:1-16. doi: 10.1016/j.pnmrs.2017.01.001. Epub 2017 Jan 11.

Abstract

Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of biological problems from environmental issues to the identification of biomarkers for human diseases. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools that are routinely, but separately, used to obtain metabolomics data sets due to their versatility, accessibility, and unique strengths. NMR requires minimal sample handling without the need for chromatography, is easily quantitative, and provides multiple means of metabolite identification, but is limited to detecting the most abundant metabolites (⩾1μM). Conversely, mass spectrometry has the ability to measure metabolites at very low concentrations (femtomolar to attomolar) and has a higher resolution (∼10-10) and dynamic range (∼10-10), but quantitation is a challenge and sample complexity may limit metabolite detection because of ion suppression. Consequently, liquid chromatography (LC) or gas chromatography (GC) is commonly employed in conjunction with MS, but this may lead to other sources of error. As a result, NMR and mass spectrometry are highly complementary, and combining the two techniques is likely to improve the overall quality of a study and enhance the coverage of the metabolome. While the majority of metabolomic studies use a single analytical source, there is a growing appreciation of the inherent value of combining NMR and MS for metabolomics. An overview of the current state of utilizing both NMR and MS for metabolomics will be presented.

摘要

代谢组学正在经历巨大的发展,并被用于解决从环境问题到人类疾病生物标志物识别等各种生物学问题。核磁共振(NMR)和质谱(MS)是常规但分别用于获取代谢组学数据集的分析工具,这是由于它们的多功能性、可及性和独特优势。核磁共振所需的样品处理最少,无需色谱法,易于定量,并提供多种代谢物识别方法,但仅限于检测最丰富的代谢物(⩾1μM)。相反,质谱能够测量极低浓度(飞摩尔到阿托摩尔)的代谢物,具有更高的分辨率(∼10-10)和动态范围(∼10-10),但定量是一个挑战,并且样品复杂性可能由于离子抑制而限制代谢物检测。因此,液相色谱(LC)或气相色谱(GC)通常与质谱联用,但这可能会导致其他误差来源。结果,核磁共振和质谱具有高度互补性,将这两种技术结合起来可能会提高研究的整体质量并扩大代谢组的覆盖范围。虽然大多数代谢组学研究使用单一分析来源,但人们越来越认识到将核磁共振和质谱结合用于代谢组学的内在价值。本文将概述当前同时利用核磁共振和质谱进行代谢组学的现状。

相似文献

引用本文的文献

10
Polycystic Ovarian Syndrome: A Review of Multi-omics Analyses.多囊卵巢综合征:多组学分析综述
Reprod Sci. 2025 Mar;32(3):618-646. doi: 10.1007/s43032-025-01789-8. Epub 2025 Jan 28.

本文引用的文献

1
Structural Analysis of Natural Products.天然产物结构分析。
Anal Chem. 2016 Nov 1;88(21):10338-10346. doi: 10.1021/acs.analchem.6b02386. Epub 2016 Oct 5.
3
The future of NMR-based metabolomics.基于核磁共振的代谢组学的未来。
Curr Opin Biotechnol. 2017 Feb;43:34-40. doi: 10.1016/j.copbio.2016.08.001. Epub 2016 Aug 28.
7
Biomarker Discovery and Translation in Metabolomics.代谢组学中的生物标志物发现与转化
Curr Metabolomics. 2013;1(3):227-240. doi: 10.2174/2213235X113019990005.
8
Metabolomics: beyond biomarkers and towards mechanisms.代谢组学:超越生物标志物,迈向作用机制研究
Nat Rev Mol Cell Biol. 2016 Jul;17(7):451-9. doi: 10.1038/nrm.2016.25. Epub 2016 Mar 16.
9
Applications of NMR spectroscopy to systems biochemistry.核磁共振光谱在系统生物化学中的应用。
Prog Nucl Magn Reson Spectrosc. 2016 Feb;92-93:18-53. doi: 10.1016/j.pnmrs.2016.01.005. Epub 2016 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验