Suppr超能文献

眼底图像中视网膜血管分类方法的综合研究

A Comprehensive Study of Retinal Vessel Classification Methods in Fundus Images.

作者信息

Miri Maliheh, Amini Zahra, Rabbani Hossein, Kafieh Raheleh

机构信息

Electrical Engineering Department, Faculty of Engineering, Higher Educational Complex of Saravan, Saravan, Iran.

Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

J Med Signals Sens. 2017 Apr-Jun;7(2):59-70.

Abstract

Nowadays, it is obvious that there is a relationship between changes in the retinal vessel structure and diseases such as diabetic, hypertension, stroke, and the other cardiovascular diseases in adults as well as retinopathy of prematurity in infants. Retinal fundus images provide non-invasive visualization of the retinal vessel structure. Applying image processing techniques in the study of digital color fundus photographs and analyzing their vasculature is a reliable approach for early diagnosis of the aforementioned diseases. Reduction in the arteriolar-venular ratio of retina is one of the primary signs of hypertension, diabetic, and cardiovascular diseases which can be calculated by analyzing the fundus images. To achieve a precise measuring of this parameter and meaningful diagnostic results, accurate classification of arteries and veins is necessary. Classification of vessels in fundus images faces with some challenges that make it difficult. In this paper, a comprehensive study of the proposed methods for classification of arteries and veins in fundus images is presented. Considering that these methods are evaluated on different datasets and use different evaluation criteria, it is not possible to conduct a fair comparison of their performance. Therefore, we evaluate the classification methods from modeling perspective. This analysis reveals that most of the proposed approaches have focused on statistics, and geometric models in spatial domain and transform domain models have received less attention. This could suggest the possibility of using transform models, especially data adaptive ones, for modeling of the fundus images in future classification approaches.

摘要

如今,视网膜血管结构的变化与糖尿病、高血压、中风等疾病以及成人的其他心血管疾病和婴儿的早产儿视网膜病变之间存在关联,这一点已十分明显。眼底图像提供了视网膜血管结构的非侵入性可视化。在数字彩色眼底照片研究中应用图像处理技术并分析其脉管系统是早期诊断上述疾病的可靠方法。视网膜动静脉比降低是高血压、糖尿病和心血管疾病的主要体征之一,可通过分析眼底图像来计算。为了精确测量该参数并获得有意义的诊断结果,动脉和静脉的准确分类是必要的。眼底图像中的血管分类面临一些挑战,这使其变得困难。本文对眼底图像中动脉和静脉分类的现有方法进行了全面研究。鉴于这些方法在不同数据集上进行评估且使用不同的评估标准,无法对它们的性能进行公平比较。因此,我们从建模角度评估分类方法。该分析表明,大多数现有方法都集中在统计方面,而空间域中的几何模型和变换域模型受到的关注较少。这可能意味着在未来的分类方法中使用变换模型,尤其是数据自适应模型来对眼底图像进行建模的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a62/5437764/5f46ddd71c09/JMSS-7-59-g001.jpg

相似文献

2
Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
IEEE Trans Med Imaging. 2011 Nov;30(11):1941-50. doi: 10.1109/TMI.2011.2159619. Epub 2011 Jun 16.
3
Automated characterization of blood vessels as arteries and veins in retinal images.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):607-17. doi: 10.1016/j.compmedimag.2013.06.003. Epub 2013 Jul 10.
4
Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images.
Artif Intell Med. 2021 Aug;118:102116. doi: 10.1016/j.artmed.2021.102116. Epub 2021 May 29.
5
Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images.
Comput Med Imaging Graph. 2011 Sep;35(6):472-80. doi: 10.1016/j.compmedimag.2011.03.002. Epub 2011 Apr 13.
6
Joint segmentation and classification of retinal arteries/veins from fundus images.
Artif Intell Med. 2019 Mar;94:96-109. doi: 10.1016/j.artmed.2019.02.004. Epub 2019 Feb 19.
7
Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants.
Comput Biol Med. 2015 Nov 1;66:316-29. doi: 10.1016/j.compbiomed.2015.09.009. Epub 2015 Sep 25.
8
Automated classification and quantitative analysis of arterial and venous vessels in fundus images.
Proc SPIE Int Soc Opt Eng. 2018 Jan-Feb;10474. doi: 10.1117/12.2290121. Epub 2018 Feb 19.

引用本文的文献

1
Research progress in deep learning-based fundus image analysis for the diagnosis and prediction of hypertension-related diseases.
Front Cell Dev Biol. 2025 Aug 6;13:1608994. doi: 10.3389/fcell.2025.1608994. eCollection 2025.
2
From Image to Sequence: Exploring Vision Transformers for Optical Coherence Tomography Classification.
J Med Signals Sens. 2025 Jun 9;15:18. doi: 10.4103/jmss.jmss_58_24. eCollection 2025.
5
Differential artery-vein analysis improves the OCTA classification of diabetic retinopathy.
Biomed Opt Express. 2024 May 22;15(6):3889-3899. doi: 10.1364/BOE.521657. eCollection 2024 Jun 1.
6
Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease.
J Pers Med. 2024 May 9;14(5):501. doi: 10.3390/jpm14050501.
7
Potential measurement error from vessel reflex and multiple light paths in dual-wavelength retinal oximetry.
Acta Ophthalmol. 2024 May;102(3):e367-e380. doi: 10.1111/aos.15776. Epub 2023 Oct 3.

本文引用的文献

1
Tree Topology Estimation.
IEEE Trans Pattern Anal Mach Intell. 2015 Aug;37(8):1688-701. doi: 10.1109/TPAMI.2014.2382116.
2
Retinal Artery-Vein Classification via Topology Estimation.
IEEE Trans Med Imaging. 2015 Dec;34(12):2518-34. doi: 10.1109/TMI.2015.2443117. Epub 2015 Jun 10.
3
Automatic retinal vessel classification using a Least Square-Support Vector Machine in VAMPIRE.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:142-5. doi: 10.1109/EMBC.2014.6943549.
4
Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.
PLoS One. 2014 Feb 12;9(2):e88061. doi: 10.1371/journal.pone.0088061. eCollection 2014.
5
Retinal vessel classification: sorting arteries and veins.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:7396-9. doi: 10.1109/EMBC.2013.6611267.
6
Automated characterization of blood vessels as arteries and veins in retinal images.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):607-17. doi: 10.1016/j.compmedimag.2013.06.003. Epub 2013 Jul 10.
7
An automatic graph-based approach for artery/vein classification in retinal images.
IEEE Trans Image Process. 2014 Mar;23(3):1073-83. doi: 10.1109/TIP.2013.2263809. Epub 2013 May 17.
8
Blood vessel segmentation methodologies in retinal images--a survey.
Comput Methods Programs Biomed. 2012 Oct;108(1):407-33. doi: 10.1016/j.cmpb.2012.03.009. Epub 2012 Apr 22.
9
Development of an automated system to classify retinal vessels into arteries and veins.
Comput Methods Programs Biomed. 2012 Oct;108(1):367-76. doi: 10.1016/j.cmpb.2012.02.008. Epub 2012 Mar 17.
10
Global prevalence and major risk factors of diabetic retinopathy.
Diabetes Care. 2012 Mar;35(3):556-64. doi: 10.2337/dc11-1909. Epub 2012 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验