Suppr超能文献

克服超稳定磷酸锆骨架体系中的晶化和可设计性问题。

Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system.

机构信息

School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Jiangsu 215123, China.

School of Environment and Biological Engineering, Nanjing University of Science &Technology, Nanjing 210094, China.

出版信息

Nat Commun. 2017 May 30;8:15369. doi: 10.1038/ncomms15369.

Abstract

Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.

摘要

基于膦酸锆的金属-有机骨架(MOFs)具有优异的化学稳定性,适用于苛刻条件下的应用。这些化合物大多以结晶不良的沉淀物形式存在,因此精确的结构信息一直难以捉摸。此外,缺乏作为二级构筑单元的零维膦酸锆簇,导致该体系的设计性较差。在此,我们克服了这些挑战,获得了适合结构分析的三种膦酸锆单晶。这些化合物是由以前未知的孤立膦酸锆簇构建的,即使在发烟酸中也具有高孔隙率和超稳定性。SZ-2 具有在膦酸锆中记录到的最大空隙体积,SZ-3 则代表了最多孔的结晶膦酸锆,也是唯一报道的可在王水中存活的多孔 MOF 材料。SZ-2 和 SZ-3 可在很宽的 pH 范围内有效地从水溶液中去除铀酰离子,我们已经阐明了去除机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f17a/5459948/732bd79ce467/ncomms15369-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验