Madison Andrew C, Royal Matthew W, Vigneault Frederic, Chen Liji, Griffin Peter B, Horowitz Mark, Church George M, Fair Richard B
Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina 27708, United States.
Wyss Institute for Biologically Inspired Engineering , Boston, Massachusetts 02115, United States.
ACS Synth Biol. 2017 Sep 15;6(9):1701-1709. doi: 10.1021/acssynbio.7b00007. Epub 2017 Jun 7.
Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 cfu·μg for an average applied electric field strength of 2.25 ± 0.50 kV·mm. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.
介电电润湿(EWD)数字微流控芯片实验室平台在自动化劳动密集型实验方案方面表现出色。当与芯片上的电穿孔能力相结合时,这些系统有望简化诸如多重自动化基因组工程(MAGE)等繁琐的过程。我们将单个钛金电穿孔电极集成到标准的平行板EWD几何结构中,以便在200 nL液滴中用报告质粒DNA高效转化大肠杆菌。测试装置运行稳定,每个装置可进行10多次转化实验,无交叉污染或失败情况。尽管EP/EWD装置中存在固有的电场不均匀性,但在平均施加电场强度为2.25±0.50 kV·mm时,芯片上的峰值转化效率测得为8.6±1.0×10 cfu·μg。在此电穿孔脉冲强度下,细胞存活率和转化分数分别为1.5±0.3%和2.3±0.1%。我们的工作将EWD工具包扩展到包括芯片上的微生物电穿孔,并开启了将诸如MAGE等先进基因组工程方法扩展到亚微升规模的可能性。