Iwai Kosuke, Wehrs Maren, Garber Megan, Sustarich Jess, Washburn Lauren, Costello Zachary, Kim Peter W, Ando David, Gaillard William R, Hillson Nathan J, Adams Paul D, Mukhopadhyay Aindrila, Garcia Martin Hector, Singh Anup K
Technology Division, DOE Joint BioEnergy Institute, Emeryville, CA 94608 USA.
Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA 94550 USA.
Microsyst Nanoeng. 2022 Mar 15;8:31. doi: 10.1038/s41378-022-00357-3. eCollection 2022.
We present a droplet-based microfluidic system that enables CRISPR-based gene editing and high-throughput screening on a chip. The microfluidic device contains a 10 × 10 element array, and each element contains sets of electrodes for two electric field-actuated operations: electrowetting for merging droplets to mix reagents and electroporation for transformation. This device can perform up to 100 genetic modification reactions in parallel, providing a scalable platform for generating the large number of engineered strains required for the combinatorial optimization of genetic pathways and predictable bioengineering. We demonstrate the system's capabilities through the CRISPR-based engineering of two test cases: (1) disruption of the function of the enzyme galactokinase () in and (2) targeted engineering of the glutamine synthetase gene () and the blue-pigment synthetase gene () to improve indigoidine production in .
我们展示了一种基于液滴的微流控系统,该系统能够在芯片上实现基于CRISPR的基因编辑和高通量筛选。该微流控装置包含一个10×10的元件阵列,每个元件包含用于两种电场驱动操作的电极组:用于合并液滴以混合试剂的电润湿和用于转化的电穿孔。该装置可并行执行多达100个基因修饰反应,为生成遗传途径组合优化和可预测生物工程所需的大量工程菌株提供了一个可扩展的平台。我们通过两个测试案例的基于CRISPR的工程展示了该系统的能力:(1)破坏大肠杆菌中半乳糖激酶(GalK)的功能;(2)对谷氨酰胺合成酶基因(glnA)和蓝色色素合成酶基因(indigoidine synthase)进行靶向工程改造,以提高大肠杆菌中靛蓝素的产量。