Allen Institute for Brain Science, 615 Westlake Avenue N, Seattle, Washington 98109, USA.
Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia 30332, USA.
Nat Commun. 2017 Jun 1;8:15604. doi: 10.1038/ncomms15604.
Single-cell characterization and perturbation of neurons provides knowledge critical to addressing fundamental neuroscience questions including the structure-function relationship and neuronal cell-type classification. Here we report a robot for efficiently performing in vivo single-cell experiments in deep brain tissues optically difficult to access. This robot automates blind (non-visually guided) single-cell electroporation (SCE) and extracellular electrophysiology, and can be used to characterize neuronal morphological and physiological properties of, and/or manipulate genetic/chemical contents via delivering extraneous materials (for example, genes) into single neurons in vivo. Tested in the mouse brain, our robot successfully reveals the full morphology of single-infragranular neurons recorded in multiple neocortical regions, as well as deep brain structures such as hippocampal CA3, with high efficiency. Our robot thus can greatly facilitate the study of in vivo full morphology and electrophysiology of single neurons in the brain.
单细胞特征分析和神经细胞干扰为解决基础神经科学问题提供了关键知识,包括结构-功能关系和神经元细胞类型分类。在此,我们报告了一种机器人,它能够高效地在深度脑组织中进行单细胞实验,这些组织在光学上难以进入。该机器人可自动进行盲(非视觉引导)单细胞电穿孔(SCE)和细胞外电生理学实验,可用于对活体单个神经元的形态和生理特性进行特征分析,和/或通过递变电活性/化学物质(例如,基因)来对其进行基因/化学内容的操作。在小鼠大脑中的测试表明,我们的机器人成功地揭示了在多个新皮层区域以及海马 CA3 等深部脑结构中记录的单个颗粒神经元的完整形态,具有很高的效率。因此,我们的机器人可以极大地促进对大脑中单个神经元的活体全形态和电生理学的研究。