Suppr超能文献

自供电治疗性释放来自于在镁上的导电聚合物/氧化石墨烯薄膜。

Self-powered therapeutic release from conducting polymer/graphene oxide films on magnesium.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Nanomedicine. 2018 Oct;14(7):2495-2503. doi: 10.1016/j.nano.2017.02.021. Epub 2017 May 29.

Abstract

Magnesium's complete in vivo degradation is appealing for medical implant applications. Rapid corrosion and hydrogen bubble generation along with inflammatory host tissue response have limited its clinical use. Here we electropolymerized a poly (3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) film directly on Mg surface. GO acted as nano-drug carrier to carry anti-inflammatory drug dexamethasone (Dex). PEDOT/GO/Dex coatings improved Mg corrosion resistance and decreased the rate of hydrogen production. Dex could be released driven by the electrical current generated from Mg corrosion. The anti-inflammatory activity of the released Dex was confirmed in microglia cultures. This PEDOT/GO/Dex film displayed the ability to both control Mg corrosion and act as an on demand release coating that delivers Dex at the corrosion site to minimize detrimental effects of corrosion byproducts. Such multi-functional smart coating will improve the clinical use of Mg implants. Furthermore, the PEDOT/GO/Drug/Mg system may be developed into self-powered implantable drug delivery devices.

摘要

镁的完全体内降解对于医学植入物应用很有吸引力。但由于其快速腐蚀和氢气泡的产生以及炎症性宿主组织反应,限制了其在临床上的应用。在这里,我们在镁表面直接电聚合了聚(3,4-亚乙基二氧噻吩)(PEDOT)和氧化石墨烯(GO)薄膜。GO 作为纳米药物载体携带抗炎药物地塞米松(Dex)。PEDOT/GO/Dex 涂层提高了镁的耐腐蚀性并降低了氢气的生成速率。Dex 可以在由镁腐蚀产生的电流驱动下释放。在小胶质细胞培养物中证实了释放的 Dex 的抗炎活性。这种 PEDOT/GO/Dex 薄膜具有控制镁腐蚀和按需释放涂层的能力,可将 Dex 递送到腐蚀部位,以最大限度地减少腐蚀副产物的有害影响。这种多功能智能涂层将提高镁植入物的临床应用。此外,PEDOT/GO/药物/镁系统可能被开发成自供电可植入药物输送装置。

相似文献

1
Self-powered therapeutic release from conducting polymer/graphene oxide films on magnesium.
Nanomedicine. 2018 Oct;14(7):2495-2503. doi: 10.1016/j.nano.2017.02.021. Epub 2017 May 29.
2
Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion.
Acta Biomater. 2017 Jan 15;48:530-540. doi: 10.1016/j.actbio.2016.11.039. Epub 2016 Nov 17.
3
Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid.
Acta Biomater. 2011 Jan;7(1):441-6. doi: 10.1016/j.actbio.2010.09.006. Epub 2010 Sep 9.
5
Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance.
Colloids Surf B Biointerfaces. 2018 Mar 1;163:100-106. doi: 10.1016/j.colsurfb.2017.12.032. Epub 2017 Dec 19.
6
In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
Biosensors (Basel). 2015 Oct 13;5(4):618-46. doi: 10.3390/bios5040618.
7
Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications.
J Biomed Mater Res A. 2018 Jul;106(7):1887-1895. doi: 10.1002/jbm.a.36385. Epub 2018 Apr 2.
8
Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics.
Adv Healthc Mater. 2019 May;8(10):e1801488. doi: 10.1002/adhm.201801488. Epub 2019 Mar 5.
9
Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion.
J Neural Eng. 2015 Feb;12(1):016008. doi: 10.1088/1741-2560/12/1/016008. Epub 2014 Dec 8.

引用本文的文献

1
Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.
Acc Chem Res. 2024 Jun 18;57(12):1684-1695. doi: 10.1021/acs.accounts.4c00160. Epub 2024 May 30.
2
Electrically Controlled Vasodilator Delivery from PEDOT/Silica Nanoparticle Modulates Vessel Diameter in Mouse Brain.
Adv Healthc Mater. 2024 Jan;13(3):e2301221. doi: 10.1002/adhm.202301221. Epub 2023 Nov 15.
3
Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants.
Materials (Basel). 2022 Dec 25;16(1):183. doi: 10.3390/ma16010183.
4
Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels.
Polymers (Basel). 2022 Nov 16;14(22):4953. doi: 10.3390/polym14224953.
5
Recent advances in the aqueous applications of PEDOT.
Nanoscale Adv. 2021 Dec 1;4(3):733-741. doi: 10.1039/d1na00748c. eCollection 2022 Feb 1.
6
The advances in nanomedicine for bone and cartilage repair.
J Nanobiotechnology. 2022 Mar 18;20(1):141. doi: 10.1186/s12951-022-01342-8.
7
Graphene for Antimicrobial and Coating Application.
Int J Mol Sci. 2022 Jan 2;23(1):499. doi: 10.3390/ijms23010499.
8
Electrically Conducting Hydrogels for Health care: Concept, Fabrication Methods, and Applications.
Int J Bioprint. 2020 Apr 30;6(2):273. doi: 10.18063/ijb.v6i2.273. eCollection 2020.
9
Nanoparticle Doped PEDOT for Enhanced Electrode Coatings and Drug Delivery.
Adv Healthc Mater. 2019 Nov;8(21):e1900622. doi: 10.1002/adhm.201900622. Epub 2019 Oct 4.
10
Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications.
Polymers (Basel). 2019 Feb 17;11(2):350. doi: 10.3390/polym11020350.

本文引用的文献

1
Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion.
Acta Biomater. 2017 Jan 15;48:530-540. doi: 10.1016/j.actbio.2016.11.039. Epub 2016 Nov 17.
2
Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions.
Langmuir. 2016 May 24;32(20):5058-68. doi: 10.1021/acs.langmuir.6b01012. Epub 2016 May 10.
3
Materials Advances for Next-Generation Ingestible Electronic Medical Devices.
Trends Biotechnol. 2015 Oct;33(10):575-585. doi: 10.1016/j.tibtech.2015.07.008. Epub 2015 Sep 21.
4
Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion.
J Neural Eng. 2015 Feb;12(1):016008. doi: 10.1088/1741-2560/12/1/016008. Epub 2014 Dec 8.
5
A survey on the applications of implantable micropump systems in drug delivery.
Curr Drug Deliv. 2014;11(1):123-31. doi: 10.2174/156720181101140212165729.
6
Electrically controlled drug delivery from graphene oxide nanocomposite films.
ACS Nano. 2014 Feb 25;8(2):1834-43. doi: 10.1021/nn406223e. Epub 2014 Jan 17.
7
Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease.
Int J Mol Sci. 2013 Dec 16;14(12):24492-500. doi: 10.3390/ijms141224492.
8
Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model.
EuroIntervention. 2013 Apr 22;8(12):1441-50. doi: 10.4244/EIJV8I12A218.
9
Fast escape of hydrogen from gas cavities around corroding magnesium implants.
Acta Biomater. 2013 Nov;9(10):8714-21. doi: 10.1016/j.actbio.2012.10.008. Epub 2012 Oct 13.
10
Redox-switchable intramolecular π-π-stacking of perylene bisimide dyes in a cyclophane.
Adv Mater. 2013 Jan 18;25(3):410-4. doi: 10.1002/adma.201201266. Epub 2012 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验