Suppr超能文献

用于评估聚焦超声辐照的琼脂基体模的声学和热学特性

Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures.

作者信息

Menikou Georgios, Damianou Christakis

机构信息

Research Centre for Biomedical Engineering, City, University of London, London, UK.

Electrical Engineering Department, Cyprus University of Technology, Limassol, Cyprus.

出版信息

J Ther Ultrasound. 2017 Jun 1;5:14. doi: 10.1186/s40349-017-0093-z. eCollection 2017.

Abstract

BACKGROUND

This study describes a series of experimental work completed towards characterizing candidate materials for fabricating brain and muscle tissue mimicking phantoms.

METHODS

The acoustic speed, attenuation, impedance, thermal diffusivity, specific heat and thermal conductivity were measured.

RESULTS

The resulting brain (2% w/v agar-1.2% w/v Silica Dioxide-25%v/v evaporated milk) and muscle tissue recipe (2% w/v agar-2% w/v Silica Dioxide-40%v/v evaporated milk) introduced a total attenuation coefficient of 0.59 dB/cm-MHz and 0.99 dB/cm-MHz respectively. Acrylonitrile Butadiene Styrene (ABS) possessed an attenuation coefficient of 16 dB/cm at 1 MHz which was found within the very wide range of attenuation coefficient values of human bones in literature. The thermal conductivity of the brain tissue phantom was estimated at 0.52 W/m°C and at 0.57 W/m.°Cfor the muscle. These values demonstrated that the proposed recipes conducted heat similar to the majority of most soft tissues found from bibliography. The soft tissue phantoms were also evaluated for their thermal repeatability after treating them repeatedly at different locations with the same sonication protocol and configuration. The average coefficient of variation of the maximum temperature at focus between the different locations was 2.6% for the brain phantom and 2.8% for the muscle phantom.

CONCLUSIONS

The proposed phantom closely matched the acoustic and thermal properties of tissues. Experiments using MR thermometry demonstrated the usefulness of this phantom to evaluate ultrasonic exposures.

摘要

背景

本研究描述了一系列为表征用于制造模拟脑和肌肉组织的体模的候选材料而完成的实验工作。

方法

测量了声速、衰减、声阻抗、热扩散率、比热容和热导率。

结果

所得的脑(2% w/v琼脂-1.2% w/v二氧化硅-25% v/v脱脂乳)和肌肉组织配方(2% w/v琼脂-2% w/v二氧化硅-40% v/v脱脂乳)的总衰减系数分别为0.59 dB/cm-MHz和0.99 dB/cm-MHz。丙烯腈-丁二烯-苯乙烯共聚物(ABS)在1 MHz时的衰减系数为16 dB/cm,这一数值在文献中报道的人体骨骼衰减系数的很宽范围内。脑组织体模的热导率估计为0.52 W/m°C,肌肉组织体模的热导率为0.57 W/m°C。这些数值表明,所提出的配方传导热量的方式与文献中大多数软组织相似。还通过在不同位置以相同的超声处理方案和配置对软组织体模进行反复处理,评估了它们的热重复性。脑体模不同位置焦点处最高温度的平均变异系数为2.6%,肌肉体模为2.8%。

结论

所提出的体模与组织的声学和热学特性紧密匹配。使用磁共振温度测量法进行的实验证明了该体模在评估超声暴露方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7be/5452295/8d5c7a83328d/40349_2017_93_Fig1_HTML.jpg

相似文献

1
Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures.
J Ther Ultrasound. 2017 Jun 1;5:14. doi: 10.1186/s40349-017-0093-z. eCollection 2017.
2
Characterization of a soft tissue-mimicking agar/wood powder material for MRgFUS applications.
Ultrasonics. 2021 May;113:106357. doi: 10.1016/j.ultras.2021.106357. Epub 2021 Jan 30.
3
Evaluating acoustic and thermal properties of a plaque phantom.
J Ultrasound. 2024 Sep;27(3):457-470. doi: 10.1007/s40477-023-00778-4. Epub 2023 Apr 8.
4
Ultrasonic Attenuation of an Agar, Silicon Dioxide, and Evaporated Milk Gel Phantom.
J Med Ultrasound. 2021 May 31;29(4):239-249. doi: 10.4103/JMU.JMU_145_20. eCollection 2021 Oct-Dec.
5
MRI compatible head phantom for ultrasound surgery.
Ultrasonics. 2015 Mar;57:144-52. doi: 10.1016/j.ultras.2014.11.004. Epub 2014 Nov 20.
6
MRI-compatible bone phantom for evaluating ultrasonic thermal exposures.
Ultrasonics. 2016 Sep;71:12-19. doi: 10.1016/j.ultras.2016.05.020. Epub 2016 May 25.
7
Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS.
J Ther Ultrasound. 2015 Jun 16;3:9. doi: 10.1186/s40349-015-0030-y. eCollection 2015.
9
Focused ultrasound heating in brain tissue/skull phantoms with 1 MHz single-element transducer.
J Ultrasound. 2024 Jun;27(2):263-274. doi: 10.1007/s40477-023-00810-7. Epub 2023 Jul 30.
10
Evaluation of ultrasonic scattering in agar-based phantoms using 3D printed scattering molds.
J Ultrasound. 2022 Sep;25(3):597-609. doi: 10.1007/s40477-021-00630-7. Epub 2022 Jan 8.

引用本文的文献

1
Acoustic Wave Propagation Behaviors and Energy Loss Mechanisms in Agar Gels with Small Particles.
Polymers (Basel). 2025 Aug 15;17(16):2226. doi: 10.3390/polym17162226.
2
Minimally Invasive Bowel Cancer Detection through Vibrating Microrobot-Induced Elastography.
Adv Intell Syst. 2025 Aug;7(8):2400926. doi: 10.1002/aisy.202400926. Epub 2025 May 19.
3
Magnetic Resonance Imaging monitoring of histotripsy effects in agar phantom.
Med Phys. 2025 Aug;52(8):e18054. doi: 10.1002/mp.18054.
4
Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T.
J Med Phys. 2024 Oct-Dec;49(4):583-596. doi: 10.4103/jmp.jmp_133_24. Epub 2024 Dec 18.
5
6
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
7
Agar-based Phantom for Evaluating Targeting of High-intensity Focused Ultrasound Systems for Breast Ablation.
J Med Phys. 2024 Jul-Sep;49(3):343-355. doi: 10.4103/jmp.jmp_52_24. Epub 2024 Sep 21.
8
Estimation of the Proton Resonance Frequency Coefficient in Agar-based Phantoms.
J Med Phys. 2024 Apr-Jun;49(2):167-180. doi: 10.4103/jmp.jmp_146_23. Epub 2024 Jun 25.
9
Non-contact elasticity contrast imaging using photon counting.
J Biomed Opt. 2024 Jul;29(7):076003. doi: 10.1117/1.JBO.29.7.076003. Epub 2024 Jul 10.
10
Tissue-Mimicking Material Fabrication and Properties for Multiparametric Ultrasound Phantoms: A Systematic Review.
Bioengineering (Basel). 2024 Jun 18;11(6):620. doi: 10.3390/bioengineering11060620.

本文引用的文献

1
Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS.
J Ther Ultrasound. 2015 Jun 16;3:9. doi: 10.1186/s40349-015-0030-y. eCollection 2015.
2
MRI compatible head phantom for ultrasound surgery.
Ultrasonics. 2015 Mar;57:144-52. doi: 10.1016/j.ultras.2014.11.004. Epub 2014 Nov 20.
3
Reusable tissue-mimicking hydrogel phantoms for focused ultrasound ablation.
Ultrason Sonochem. 2015 Mar;23:399-405. doi: 10.1016/j.ultsonch.2014.10.008. Epub 2014 Oct 16.
5
Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging.
Biomed Opt Express. 2011 Nov 1;2(11):3193-206. doi: 10.1364/BOE.2.003193. Epub 2011 Oct 27.
6
A review of tissue substitutes for ultrasound imaging.
Ultrasound Med Biol. 2010 Jun;36(6):861-73. doi: 10.1016/j.ultrasmedbio.2010.02.012.
7
Acoustical properties of selected tissue phantom materials for ultrasound imaging.
Phys Med Biol. 2007 Oct 21;52(20):N475-84. doi: 10.1088/0031-9155/52/20/N02. Epub 2007 Oct 1.
8
Spectral ratio method to estimate broadband ultrasound attenuation of cortical bones in vitro using multiple reflections.
Phys Med Biol. 2007 Oct 7;52(19):5855-69. doi: 10.1088/0031-9155/52/19/008. Epub 2007 Sep 14.
9
A realistic phantom for brain-shift simulations.
Med Phys. 2006 Sep;33(9):3234-40. doi: 10.1118/1.2219091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验