Li Ling, Wang Xianshuo, Li Jiahui, Zhao Yanping
College of Communication Engineering, Jilin University, Changchun, Jilin China.
Cogn Neurodyn. 2024 Aug;18(4):1671-1687. doi: 10.1007/s11571-023-10041-5. Epub 2023 Dec 1.
Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.
重度抑郁症(MDD)是一种在全球范围内普遍存在的精神疾病。针对MDD有多种检测方法,但快速且可靠的检测仍然是一个紧迫的挑战。在本研究中,我们提出了一种名为P-MSWC的融合特征,作为一种新型标记物来构建脑功能连接矩阵,并利用卷积神经网络(CNN)基于脑电图(EEG)信号识别MDD。首先,我们将同步挤压小波变换和相干理论相结合以获得同步挤压小波相干性。然后,我们通过合并同步挤压小波相干值和锁相值来获得融合特征,该融合特征通过全面捕捉原始EEG信号的信息并展现出显著的抗噪能力,优于传统的功能连接标记物。最后,我们提出了一种轻量级CNN模型,该模型有效利用了使用我们的新型标记物构建的大脑高维连接矩阵,以实现对MDD更准确、高效的检测。所提出的方法在单个数据集上的准确率达到99.92%,在组合数据集上的准确率达到97.86%。此外,对比实验表明所提出方法的性能优于传统机器学习方法。此外,可视化实验揭示了MDD患者与健康受试者之间脑连接分布的差异,包括γ波段T7、O1、F8和C3通道的连接性降低。实验结果表明,该融合特征可作为构建功能性脑连接的新标记物,深度学习与功能连接矩阵的结合可为MDD的检测提供更多帮助。