Suppr超能文献

一种基于脑电图的功能连接标记物:重度抑郁症的检测

An EEG-based marker of functional connectivity: detection of major depressive disorder.

作者信息

Li Ling, Wang Xianshuo, Li Jiahui, Zhao Yanping

机构信息

College of Communication Engineering, Jilin University, Changchun, Jilin China.

出版信息

Cogn Neurodyn. 2024 Aug;18(4):1671-1687. doi: 10.1007/s11571-023-10041-5. Epub 2023 Dec 1.

Abstract

Major depressive disorder (MDD) is a prevalent psychiatric disorder globally. There are many assays for MDD, but rapid and reliable detection remains a pressing challenge. In this study, we present a fusion feature called P-MSWC, as a novel marker to construct brain functional connectivity matrices and utilize the convolutional neural network (CNN) to identify MDD based on electroencephalogram (EEG) signal. Firstly, we combine synchrosqueezed wavelet transform and coherence theory to get synchrosqueezed wavelet coherence. Then, we obtain the fusion feature by incorporating synchrosqueezed wavelet coherence value and phase-locking value, which outperforms conventional functional connectivity markers by comprehensively capturing the original EEG signal's information and demonstrating notable noise-resistance capabilities. Finally, we propose a lightweight CNN model that effectively utilizes the high-dimensional connectivity matrix of the brain, constructed using our novel marker, to enable more accurate and efficient detection of MDD. The proposed method achieves 99.92% accuracy on a single dataset and 97.86% accuracy on a combined dataset. Moreover, comparison experiments have shown that the performance of the proposed method is superior to traditional machine learning methods. Furthermore, visualization experiments reveal differences in the distribution of brain connectivity between MDD patients and healthy subjects, including decreased connectivity in the T7, O1, F8, and C3 channels of the gamma band. The results of the experiments indicate that the fusion feature can be utilized as a new marker for constructing functional brain connectivity, and the combination of deep learning and functional connectivity matrices can provide more help for the detection of MDD.

摘要

重度抑郁症(MDD)是一种在全球范围内普遍存在的精神疾病。针对MDD有多种检测方法,但快速且可靠的检测仍然是一个紧迫的挑战。在本研究中,我们提出了一种名为P-MSWC的融合特征,作为一种新型标记物来构建脑功能连接矩阵,并利用卷积神经网络(CNN)基于脑电图(EEG)信号识别MDD。首先,我们将同步挤压小波变换和相干理论相结合以获得同步挤压小波相干性。然后,我们通过合并同步挤压小波相干值和锁相值来获得融合特征,该融合特征通过全面捕捉原始EEG信号的信息并展现出显著的抗噪能力,优于传统的功能连接标记物。最后,我们提出了一种轻量级CNN模型,该模型有效利用了使用我们的新型标记物构建的大脑高维连接矩阵,以实现对MDD更准确、高效的检测。所提出的方法在单个数据集上的准确率达到99.92%,在组合数据集上的准确率达到97.86%。此外,对比实验表明所提出方法的性能优于传统机器学习方法。此外,可视化实验揭示了MDD患者与健康受试者之间脑连接分布的差异,包括γ波段T7、O1、F8和C3通道的连接性降低。实验结果表明,该融合特征可作为构建功能性脑连接的新标记物,深度学习与功能连接矩阵的结合可为MDD的检测提供更多帮助。

相似文献

2
Omega-3 fatty acids for depression in adults.成人抑郁症的ω-3脂肪酸治疗
Cochrane Database Syst Rev. 2015 Nov 5;2015(11):CD004692. doi: 10.1002/14651858.CD004692.pub4.
7
Omega-3 fatty acids for depression in adults.ω-3 脂肪酸治疗成人抑郁症。
Cochrane Database Syst Rev. 2021 Nov 24;11(11):CD004692. doi: 10.1002/14651858.CD004692.pub5.

引用本文的文献

本文引用的文献

2
The emergent properties of the connected brain.联网大脑的涌现特性。
Science. 2022 Nov 4;378(6619):505-510. doi: 10.1126/science.abq2591. Epub 2022 Nov 3.
3
Scale matters: The nested human connectome.规模很重要:嵌套的人类连接组。
Science. 2022 Nov 4;378(6619):500-504. doi: 10.1126/science.abq2599. Epub 2022 Nov 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验