Suppr超能文献

大规模药物-靶标相互作用预测:以数据为中心的综述。

Large-Scale Prediction of Drug-Target Interaction: a Data-Centric Review.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.

出版信息

AAPS J. 2017 Sep;19(5):1264-1275. doi: 10.1208/s12248-017-0092-6. Epub 2017 Jun 2.

Abstract

The prediction of drug-target interactions (DTIs) is of extraordinary significance to modern drug discovery in terms of suggesting new drug candidates and repositioning old drugs. Despite technological advances, large-scale experimental determination of DTIs is still expensive and laborious. Effective and low-cost computational alternatives remain in strong need. Meanwhile, open-access resources have been rapidly growing with massive amount of bioactivity data becoming available, creating unprecedented opportunities for the development of novel in silico models for large-scale DTI prediction. In this work, we review the state-of-the-art computational approaches for identifying DTIs from a data-centric perspective: what the underlying data are and how they are utilized in each study. We also summarize popular public data resources and online tools for DTI prediction. It is found that various types of data were employed including properties of chemical structures, drug therapeutic effects and side effects, drug-target binding, drug-drug interactions, bioactivity data of drug molecules across multiple biological targets, and drug-induced gene expressions. More often, the heterogeneous data were integrated to offer better performance. However, challenges remain such as handling data imbalance, incorporating negative samples and quantitative bioactivity data, as well as maintaining cross-links among different data sources, which are essential for large-scale and automated information integration.

摘要

药物-靶标相互作用(DTI)的预测对于现代药物发现具有重要意义,它可以为新药候选物的发现和老药的再定位提供线索。尽管技术有所进步,但大规模的 DTI 实验测定仍然昂贵且费力。因此,仍需要有效的低成本计算替代方法。同时,随着大量生物活性数据的可获得性,开放获取资源迅速增长,为开发用于大规模 DTI 预测的新型计算模型创造了前所未有的机会。在这项工作中,我们从数据为中心的角度回顾了识别 DTI 的最新计算方法:底层数据是什么,以及在每个研究中如何利用这些数据。我们还总结了用于 DTI 预测的流行公共数据资源和在线工具。结果发现,研究中使用了各种类型的数据,包括化学结构的性质、药物治疗效果和副作用、药物-靶标结合、药物-药物相互作用、药物分子在多个生物靶标上的生物活性数据以及药物诱导的基因表达。更常见的是,整合了异质数据以提供更好的性能。然而,仍然存在一些挑战,如处理数据不平衡、纳入负样本和定量生物活性数据,以及保持不同数据源之间的链接,这些对于大规模和自动化信息集成至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca1b/11097213/15085a4ea079/nihms-1989936-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验