Suppr超能文献

药物研发中的人工智能:数据驱动与机器学习方法的全面综述

Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches.

作者信息

Kim Hyunho, Kim Eunyoung, Lee Ingoo, Bae Bongsung, Park Minsu, Nam Hojung

机构信息

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea.

出版信息

Biotechnol Bioprocess Eng. 2020;25(6):895-930. doi: 10.1007/s12257-020-0049-y. Epub 2021 Jan 7.

Abstract

As expenditure on drug development increases exponentially, the overall drug discovery process requires a sustainable revolution. Since artificial intelligence (AI) is leading the fourth industrial revolution, AI can be considered as a viable solution for unstable drug research and development. Generally, AI is applied to fields with sufficient data such as computer vision and natural language processing, but there are many efforts to revolutionize the existing drug discovery process by applying AI. This review provides a comprehensive, organized summary of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning. The main data sources in each field are also summarized in this review. In addition, an in-depth analysis of the remaining challenges and limitations will be provided, and proposals for promising future directions in each of the aforementioned areas.

摘要

随着药物研发支出呈指数级增长,整个药物发现过程需要一场可持续的变革。由于人工智能(AI)引领着第四次工业革命,因此可将其视为解决不稳定的药物研发问题的可行方案。一般来说,AI应用于具有足够数据的领域,如计算机视觉和自然语言处理,但也有许多通过应用AI来革新现有药物发现过程的努力。本综述全面、系统地总结了AI引导的药物发现过程中包括靶点识别、活性分子识别、药物代谢及药物安全性预测(ADMET)、先导化合物优化和药物重新定位等方面的最新研究趋势。每个领域的主要数据源也在本综述中进行了总结。此外,还将对剩余的挑战和局限性进行深入分析,并针对上述每个领域提出有前景的未来发展方向建议。

相似文献

6
Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.人工智能在计算机辅助药物发现中的概念。
Chem Rev. 2019 Sep 25;119(18):10520-10594. doi: 10.1021/acs.chemrev.8b00728. Epub 2019 Jul 11.

引用本文的文献

1
Explainable Artificial Intelligence in the Field of Drug Research.药物研究领域中的可解释人工智能
Drug Des Devel Ther. 2025 May 29;19:4501-4516. doi: 10.2147/DDDT.S525171. eCollection 2025.
3
Decoding Drug Discovery: Exploring A-to-Z In Silico Methods for Beginners.解码药物发现:为初学者探索从A到Z的计算机模拟方法。
Appl Biochem Biotechnol. 2025 Mar;197(3):1453-1503. doi: 10.1007/s12010-024-05110-2. Epub 2024 Dec 4.

本文引用的文献

2
A novel adaptive ensemble classification framework for ADME prediction.一种用于ADME预测的新型自适应集成分类框架。
RSC Adv. 2018 Mar 26;8(21):11661-11683. doi: 10.1039/c8ra01206g. eCollection 2018 Mar 21.
10
A review of computational drug repurposing.计算性药物重新利用综述。
Transl Clin Pharmacol. 2019 Jun;27(2):59-63. doi: 10.12793/tcp.2019.27.2.59. Epub 2019 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验