Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nat Commun. 2017 Jun 5;8:15666. doi: 10.1038/ncomms15666.
Memristors are promising building blocks for the next-generation memory and neuromorphic computing systems. Most memristors use materials that are incompatible with the silicon dominant complementary metal-oxide-semiconductor technology, and require external selectors in order for large memristor arrays to function properly. Here we demonstrate a fully foundry-compatible, all-silicon-based and self-rectifying memristor that negates the need for external selectors in large arrays. With a p-Si/SiO/n-Si structure, our memristor exhibits repeatable unipolar resistance switching behaviour (10 rectifying ratio, 10 ON/OFF) and excellent retention at 300 °C. We further build three-dimensinal crossbar arrays (up to five layers of 100 nm memristors) using fluid-supported silicon membranes, and experimentally confirm the successful suppression of both intra- and inter-layer sneak path currents through the built-in diodes. The current work opens up opportunities for low-cost mass production of three-dimensional memristor arrays on large silicon and flexible substrates without increasing circuit complexity.
忆阻器是下一代内存和神经形态计算系统有前途的构建模块。大多数忆阻器使用的材料与主导互补金属氧化物半导体技术的硅不兼容,并且需要外部选择器才能使大型忆阻器阵列正常工作。在这里,我们展示了一种完全与制造工艺兼容、基于全硅且自整流的忆阻器,它无需在大型阵列中使用外部选择器。我们的忆阻器采用 p-Si/SiO/n-Si 结构,具有可重复的单极电阻开关行为(10 个整流比,10 个 ON/OFF)和在 300°C 时的出色保持性。我们进一步使用流体支撑的硅膜构建了三维交叉阵列(最多 5 层 100nm 的忆阻器),并通过内置二极管实验证实成功抑制了层内和层间的 sneak 路径电流。这项工作为在大型硅和柔性衬底上进行低成本、大规模生产三维忆阻器阵列开辟了机会,而不会增加电路复杂性。