Sytu Marion Ryan C, Hahm Jong-In
Department of Chemistry, Georgetown University, 37th and O Sts. NW., Washington, DC 20057, USA.
Nanomaterials (Basel). 2025 Apr 17;15(8):617. doi: 10.3390/nano15080617.
Hybrid nanostructures can be engineered to exhibit superior functionality beyond the level attainable from each of the constituent nanomaterials by synergistically integrating their unique properties. In this work, we designed individual hybrid nanorods (NRs) of ZnO-Ag in different heterojunction configurations where each hybrid NR consists of a single ZnO NR forming a junction with a single Ag NR. We subsequently employed the ZnO-Ag hybrid NRs in the fluorescence detection of the model chemical and biological analytes, rhodamine 6G (R6G), and tumor necrosis factor-α (TNF-α), that undergo simple as well as more complex immunoreaction steps on the hybrid NRs. We determine how parameters such as the analyte concentration, ZnO-Ag heterojunction configuration, and NR length can influence the fluorescence signals, enhancement factors (EFs), as well as changes in EFs (%EFs) at different positions on the hybrid NRs. We provide much needed insights into the fluorescence enhancement capability of single hybrid NR systems using a signal source located external to the NRs. Moreover, we identify key consideration factors that are critical to the design and optimization of a hybrid NR platform for achieving high signal enhancements. We show that higher EFs are consistently observed from the junction relative to other positions in a given hybrid NR, from the end-end relative to other heterojunction configurations, and from longer than shorter ZnO NRs. Our research efforts demonstrate that the synergistic interplay of the two component NRs of ZnO and Ag escalates the fluorescence detection capability of the ZnO-Ag hybrid NR. A superior enhancement level surpassing those attainable by each component NR alone can be obtained from the hybrid NR. Hence, our work further substantiates the potential utility of individual semiconductor-metal hybrid NRs for highly miniaturized and ultra-trace level detection, especially by leveraging the critical consideration factors to achieve a higher detection capability.
通过协同整合其独特性能,可设计出具有卓越功能的混合纳米结构,其功能超越了每种组成纳米材料所能达到的水平。在这项工作中,我们设计了不同异质结构型的单个ZnO-Ag混合纳米棒(NRs),其中每个混合NR由单个ZnO NR与单个Ag NR形成结组成。随后,我们将ZnO-Ag混合NRs用于模型化学和生物分析物罗丹明6G(R6G)和肿瘤坏死因子-α(TNF-α)的荧光检测,这些分析物在混合NRs上经历简单以及更复杂的免疫反应步骤。我们确定了诸如分析物浓度、ZnO-Ag异质结构型和NR长度等参数如何影响荧光信号、增强因子(EFs)以及混合NRs不同位置处EFs的变化(%EFs)。我们利用位于NRs外部的信号源,对单个混合NR系统的荧光增强能力提供了急需的见解。此外,我们确定了对于设计和优化用于实现高信号增强的混合NR平台至关重要的关键考虑因素。我们表明,在给定的混合NR中,相对于其他位置,从结处始终观察到更高的EFs;相对于其他异质结构型,从端-端处观察到更高的EFs;并且从较长的ZnO NRs比短的ZnO NRs观察到更高的EFs。我们的研究工作表明,ZnO和Ag这两种组成NRs的协同相互作用提高了ZnO-Ag混合NR的荧光检测能力。从混合NR中可以获得超过单独每个组成NR所能达到的卓越增强水平。因此,我们的工作进一步证实了单个半导体-金属混合NRs在高度小型化和超痕量水平检测中的潜在效用,特别是通过利用关键考虑因素来实现更高的检测能力。