Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.
Nat Commun. 2017 Jun 6;8:15790. doi: 10.1038/ncomms15790.
We recently developed base editing, a genome-editing approach that enables the programmable conversion of one base pair into another without double-stranded DNA cleavage, excess stochastic insertions and deletions, or dependence on homology-directed repair. The application of base editing is limited by off-target activity and reliance on intracellular DNA delivery. Here we describe two advances that address these limitations. First, we greatly reduce off-target base editing by installing mutations into our third-generation base editor (BE3) to generate a high-fidelity base editor (HF-BE3). Next, we purify and deliver BE3 and HF-BE3 as ribonucleoprotein (RNP) complexes into mammalian cells, establishing DNA-free base editing. RNP delivery of BE3 confers higher specificity even than plasmid transfection of HF-BE3, while maintaining comparable on-target editing levels. Finally, we apply these advances to deliver BE3 RNPs into both zebrafish embryos and the inner ear of live mice to achieve specific, DNA-free base editing in vivo.
我们最近开发了碱基编辑技术,这是一种基因组编辑方法,可在不进行双链 DNA 切割、过多随机插入和缺失或不依赖同源定向修复的情况下,将一个碱基对可编程地转换为另一个碱基对。碱基编辑的应用受到脱靶活性和对细胞内 DNA 递送的依赖的限制。在这里,我们描述了两项可解决这些限制的进展。首先,我们通过在第三代碱基编辑器(BE3)中安装突变来大大减少脱靶碱基编辑,从而生成高保真碱基编辑器(HF-BE3)。接下来,我们将 BE3 和 HF-BE3 纯化并作为核糖核蛋白(RNP)复合物递送至哺乳动物细胞中,从而实现无 DNA 的碱基编辑。RNP 递送的 BE3 甚至比 HF-BE3 的质粒转染具有更高的特异性,同时保持可比的靶向编辑水平。最后,我们将这些进展应用于将 BE3 RNP 递送至斑马鱼胚胎和活体小鼠内耳中,以在体内实现特定的、无 DNA 的碱基编辑。