Suppr超能文献

提高碱基切除修复抑制和噬菌体 Mu Gam 蛋白产量可提高 C:G 到 T:A 碱基编辑器的效率和产物纯度。

Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.

出版信息

Sci Adv. 2017 Aug 30;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection 2017 Aug.

Abstract

We recently developed base editing, the programmable conversion of target C:G base pairs to T:A without inducing double-stranded DNA breaks (DSBs) or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases. Over the past year, the third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms. The product distribution of base editing-the frequency with which the target C:G is converted to mixtures of undesired by-products, along with the desired T:A product-varies in a target site-dependent manner. We characterize determinants of base editing outcomes in human cells and establish that the formation of undesired products is dependent on uracil N-glycosylase (UNG) and is more likely to occur at target sites containing only a single C within the base editing activity window. We engineered CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences. On the basis of these observations, we engineered fourth-generation base editors (BE4 and SaBE4) that increase the efficiency of C:G to T:A base editing by approximately 50%, while halving the frequency of undesired by-products compared to BE3. Fusing BE3, BE4, SaBE3, or SaBE4 to Gam, a bacteriophage Mu protein that binds DSBs greatly reduces indel formation during base editing, in most cases to below 1.5%, and further improves product purity. BE4, SaBE4, BE4-Gam, and SaBE4-Gam represent the state of the art in C:G-to-T:A base editing, and we recommend their use in future efforts.

摘要

我们最近开发了碱基编辑技术,该技术可在不诱导双链 DNA 断裂 (DSB) 的情况下,将目标 C:G 碱基对可编程地转换为 T:A,也无需使用工程化的 Cas9 变体和胞嘧啶脱氨酶融合进行同源定向修复。在过去的一年中,第三代碱基编辑器 (BE3) 和相关技术已被许多研究人员在广泛的生物中成功使用。碱基编辑的产物分布——目标 C:G 被转换为不需要的副产物混合物的频率,以及所需的 T:A 产物——在靶位点依赖性方式上有所不同。我们描述了人类细胞中碱基编辑结果的决定因素,并确定了不需要产物的形成依赖于尿嘧啶 N-糖基化酶 (UNG),并且更有可能发生在碱基编辑活性窗口内仅包含单个 C 的靶位点上。我们设计了 CDA1-BE3 和 AID-BE3,它们使用增加某些序列碱基编辑效率的胞嘧啶脱氨酶同源物。基于这些观察结果,我们设计了第四代碱基编辑器 (BE4 和 SaBE4),它们将 C:G 到 T:A 的碱基编辑效率提高了约 50%,同时与 BE3 相比,不需要的副产物的频率降低了一半。将 BE3、BE4、SaBE3 或 SaBE4 与 Gam 融合,Gam 是一种噬菌体 Mu 蛋白,可结合 DSB,可大大降低碱基编辑过程中的插入缺失形成,在大多数情况下降低到 1.5%以下,进一步提高了产物纯度。BE4、SaBE4、BE4-Gam 和 SaBE4-Gam 代表了 C:G 到 T:A 碱基编辑的最新技术水平,我们建议在未来的研究中使用它们。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ad/5576876/04384af42e33/aao4774-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验