Kihal-Talantikite Wahida, Weber Christiane, Pedrono Gaelle, Segala Claire, Arveiler Dominique, Sabel Clive E, Deguen Séverine, Bard Denis
LIVE UMR 7362 CNRS (Laboratoire Image Ville Environnement), University of Strasbourg, Strasbourg 6700, Strasbourg, France.
UMR Tetis (Territoires, environnement, télédétection et information spatiale), Montpelier, France.
Int J Health Geogr. 2017 Jun 7;16(1):22. doi: 10.1186/s12942-017-0094-8.
There is a growing understanding of the role played by 'neighbourhood' in influencing health status. Various neighbourhood characteristics-such as socioeconomic environment, availability of amenities, and social cohesion, may be combined-and this could contribute to rising health inequalities. This study aims to combine a data-driven approach with clustering analysis techniques, to investigate neighbourhood characteristics that may explain the geographical distribution of the onset of myocardial infarction (MI) risk.
All MI events in patients aged 35-74 years occurring in the Strasbourg metropolitan area (SMA), from January 1, 2000 to December 31, 2007 were obtained from the Bas-Rhin coronary heart disease register. All cases were geocoded to the census block for the residential address. Each areal unit, characterized by contextual neighbourhood profile, included socioeconomic environment, availability of amenities (including leisure centres, libraries and parks, and transport) and psychosocial environment as well as specific annual rates standardized (per 100,000 inhabitants). A spatial scan statistic implemented in SaTScan was then used to identify statistically significant spatial clusters of high and low risk of MI.
MI incidence was non-randomly spatially distributed, with a cluster of high risk of MI in the northern part of the SMA [relative risk (RR) = 1.70, p = 0.001] and a cluster of low risk of MI located in the first and second periphery of SMA (RR 0.04, p value = 0.001). Our findings suggest that the location of low MI risk is characterized by a high socioeconomic level and a low level of access to various amenities; conversely, the location of high MI risk is characterized by a high level of socioeconomic deprivation-despite the fact that inhabitants have good access to the local recreational and leisure infrastructure.
Our data-driven approach highlights how the different contextual dimensions were inter-combined in the SMA. Our spatial approach allowed us to identify the neighbourhood characteristics of inhabitants living within a cluster of high versus low MI risk. Therefore, spatial data-driven analyses of routinely-collected data georeferenced by various sources may serve to guide policymakers in defining and promoting targeted actions at fine spatial level.
人们越来越认识到“社区”在影响健康状况方面所起的作用。各种社区特征,如社会经济环境、便利设施的可及性和社会凝聚力,可能相互结合,这可能导致健康不平等加剧。本研究旨在将数据驱动方法与聚类分析技术相结合,以调查可能解释心肌梗死(MI)风险发作地理分布的社区特征。
从下莱茵冠心病登记处获取2000年1月1日至2007年12月31日在斯特拉斯堡大都市区(SMA)发生的所有35 - 74岁患者的MI事件。所有病例均根据居住地址地理编码到普查街区。每个区域单元以背景社区概况为特征,包括社会经济环境、便利设施的可及性(包括休闲中心、图书馆、公园和交通)以及社会心理环境,以及标准化的特定年发病率(每10万居民)。然后使用在SaTScan中实施的空间扫描统计来识别MI高风险和低风险的统计学显著空间聚类。
MI发病率在空间上呈非随机分布,在SMA北部有一个MI高风险聚类[相对风险(RR)= 1.70,p = 0.001],而在SMA的第一和第二外围有一个MI低风险聚类(RR = 0.04,p值 = 0.001)。我们的研究结果表明,MI低风险区域的特征是社会经济水平高且获得各种便利设施的机会少;相反,MI高风险区域的特征是社会经济贫困程度高,尽管居民能够很好地使用当地的娱乐和休闲基础设施。
我们的数据驱动方法突出了SMA中不同背景维度是如何相互结合的。我们的空间方法使我们能够识别居住在MI高风险和低风险聚类中的居民的社区特征。因此,对由各种来源地理参考的常规收集数据进行空间数据驱动分析,可能有助于指导政策制定者在精细空间层面定义和推广有针对性的行动。