Suppr超能文献

沿海微生物席的活动群落与定殖群落的比较。

Comparison of the active and resident community of a coastal microbial mat.

机构信息

Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands.

Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.

出版信息

Sci Rep. 2017 Jun 7;7(1):2969. doi: 10.1038/s41598-017-03095-z.

Abstract

Coastal microbial mats form a nearly closed micro-scale ecosystem harboring a complex microbial community. Previous DNA based analysis did not necessarily provide information about the active fraction of the microbial community because it includes dormant, inactive cells as well as a potential stable pool of extracellular DNA. Here we focused on the active microbial community by comparing 16S rRNA sequences obtained from the ribosomal RNA pool with gene sequences obtained from the DNA fraction. In addition, we aimed to establish an optimal and feasible sampling protocol that takes potential spatial and temporal heterogeneity into account. The coastal microbial mat investigated here was sampled randomly and at regular time points during one 24-h period. DNA and RNA was extracted and after conversion of the RNA fraction to cDNA, the V1-V3 and the V3-V4 regions of the 16S rRNA gene were targeted for high-throughput amplicon sequencing. We show that the community composition varies little in time and space whereas two amplified 16S regions gave significant different results. The largest differences were found when comparing the "resident community" (DNA) with the "active community" (cDNA/RNA); in the latter, Cyanobacteria dominated for almost 95% while they represented 60% of the resident fraction.

摘要

滨海微生物垫形成了一个近乎封闭的微观生态系统,其中栖息着复杂的微生物群落。之前基于 DNA 的分析不一定能提供微生物群落活性部分的信息,因为它既包含休眠的、不活跃的细胞,也包含潜在稳定的细胞外 DNA 池。在这里,我们通过比较核糖体 RNA 池中的 16S rRNA 序列和 DNA 部分中获得的基因序列,重点关注活性微生物群落。此外,我们旨在建立一个最佳和可行的采样方案,以考虑潜在的空间和时间异质性。这里研究的滨海微生物垫是在一天 24 小时内随机和定期采样的。提取 DNA 和 RNA,并将 RNA 部分转化为 cDNA 后,我们针对 16S rRNA 基因的 V1-V3 和 V3-V4 区进行高通量扩增子测序。结果表明,群落组成在时间和空间上变化不大,而两个扩增的 16S 区给出了显著不同的结果。当将“常驻群落”(DNA)与“活性群落”(cDNA/RNA)进行比较时,差异最大;在后一种情况下,蓝细菌几乎占主导地位,达到 95%,而它们在常驻群落中占 60%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc24/5462767/2d109d60376a/41598_2017_3095_Fig1_HTML.jpg

相似文献

1
Comparison of the active and resident community of a coastal microbial mat.
Sci Rep. 2017 Jun 7;7(1):2969. doi: 10.1038/s41598-017-03095-z.
2
rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing.
BMC Microbiol. 2019 Jul 29;19(1):171. doi: 10.1186/s12866-019-1546-z.
6
Bacteria and Archaea diversity within the hot springs of Lake Magadi and Little Magadi in Kenya.
BMC Microbiol. 2016 Jul 7;16(1):136. doi: 10.1186/s12866-016-0748-x.
10
The effect of 16S rRNA region choice on bacterial community metabarcoding results.
Sci Data. 2019 Feb 5;6:190007. doi: 10.1038/sdata.2019.7.

引用本文的文献

2
Spatial co-occurrence patterns of benthic microbial assemblage in response to trace metals in the Atacama Desert Coastline.
Front Microbiol. 2023 Jan 16;13:1020491. doi: 10.3389/fmicb.2022.1020491. eCollection 2022.
3
Temporal dynamics of total and active root-associated diazotrophic communities in field-grown rice.
Front Microbiol. 2022 Oct 13;13:1016547. doi: 10.3389/fmicb.2022.1016547. eCollection 2022.
4
Coastal Microbial Communities Disrupted During the 2018 Hurricane Season in Outer Banks, North Carolina.
Front Microbiol. 2022 Jun 9;13:816573. doi: 10.3389/fmicb.2022.816573. eCollection 2022.
5
Alteration and the Function of Intestinal Microbiota in High-Fat-Diet- or Genetics-Induced Lipid Accumulation.
Front Microbiol. 2021 Sep 17;12:741616. doi: 10.3389/fmicb.2021.741616. eCollection 2021.
6
Microbial Diversity Profiling of Gut Microbiota of Using Three Hypervariable Regions of the Bacterial 16S rRNA.
Microorganisms. 2021 Aug 12;9(8):1721. doi: 10.3390/microorganisms9081721.
10
Seasonal development of a coastal microbial mat.
Sci Rep. 2019 Jun 21;9(1):9035. doi: 10.1038/s41598-019-45490-8.

本文引用的文献

1
Physiological ecology of cyanobacteria in microbial mats and other communities.
New Phytol. 1995 Sep;131(1):1-32. doi: 10.1111/j.1469-8137.1995.tb03051.x.
2
VSEARCH: a versatile open source tool for metagenomics.
PeerJ. 2016 Oct 18;4:e2584. doi: 10.7717/peerj.2584. eCollection 2016.
3
Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics.
Front Microbiol. 2016 Apr 20;7:459. doi: 10.3389/fmicb.2016.00459. eCollection 2016.
4
Expanding the World of Marine Bacterial and Archaeal Clades.
Front Microbiol. 2016 Jan 8;6:1524. doi: 10.3389/fmicb.2015.01524. eCollection 2015.
5
Winter bloom of a rare betaproteobacterium in the Arctic Ocean.
Front Microbiol. 2014 Aug 20;5:425. doi: 10.3389/fmicb.2014.00425. eCollection 2014.
7
Molecular ecology of microbial mats.
FEMS Microbiol Ecol. 2014 Nov;90(2):335-50. doi: 10.1111/1574-6941.12408. Epub 2014 Aug 28.
8
PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
Bioinformatics. 2014 Mar 1;30(5):614-20. doi: 10.1093/bioinformatics/btt593. Epub 2013 Oct 18.
9
Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses.
ISME J. 2013 Nov;7(11):2061-8. doi: 10.1038/ismej.2013.102. Epub 2013 Jul 4.
10
Coastal microbial mat diversity along a natural salinity gradient.
PLoS One. 2013 May 21;8(5):e63166. doi: 10.1371/journal.pone.0063166. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验