Suppr超能文献

基于迭代典型相关分析的帕金森病自动诊断特征选择

Feature Selection Based on Iterative Canonical Correlation Analysis for Automatic Diagnosis of Parkinson's Disease.

作者信息

Liu Luyan, Wang Qian, Adeli Ehsan, Zhang Lichi, Zhang Han, Shen Dinggang

机构信息

School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.

Department of Radiology BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9901:1-8. doi: 10.1007/978-3-319-46723-8_1. Epub 2016 Oct 2.

Abstract

Parkinson's disease (PD) is a major progressive neurodegenerative disorder. Accurate diagnosis of PD is crucial to control the symptoms appropriately. However, its clinical diagnosis mostly relies on the subjective judgment of physicians and the clinical symptoms that often appear late. Recent neuroimaging techniques, along with machine learning methods, provide alternative solutions for PD screening. In this paper, we propose a novel feature selection technique, based on iterative canonical correlation analysis (ICCA), to investigate the roles of different brain regions in PD through T1-weighted MR images. First of all, and tissue volumes in brain regions of interest are extracted as two feature vectors. Then, a small group of significant features were selected using the iterative structure of our proposed ICCA framework from both feature vectors. Finally, the selected features are used to build a robust classifier for automatic diagnosis of PD. Experimental results show that the proposed feature selection method results in better diagnosis accuracy, compared to the baseline and state-of-the-art methods.

摘要

帕金森病(PD)是一种主要的进行性神经退行性疾病。准确诊断帕金森病对于适当控制症状至关重要。然而,其临床诊断大多依赖于医生的主观判断以及往往出现较晚的临床症状。近期的神经成像技术与机器学习方法一起,为帕金森病筛查提供了替代解决方案。在本文中,我们提出一种基于迭代典型相关分析(ICCA)的新型特征选择技术,以通过T1加权磁共振图像研究不同脑区在帕金森病中的作用。首先,提取感兴趣脑区中的[具体脑区1]和[具体脑区2]组织体积作为两个特征向量。然后,使用我们提出的ICCA框架的迭代结构从两个特征向量中选择一小部分显著特征。最后,将所选特征用于构建用于帕金森病自动诊断的稳健分类器。实验结果表明,与基线方法和现有技术方法相比,所提出的特征选择方法具有更高的诊断准确率。

相似文献

引用本文的文献

3
Machine Learning for the Diagnosis of Parkinson's Disease: A Review of Literature.用于帕金森病诊断的机器学习:文献综述
Front Aging Neurosci. 2021 May 6;13:633752. doi: 10.3389/fnagi.2021.633752. eCollection 2021.

本文引用的文献

2
Multi-modality canonical feature selection for Alzheimer's disease diagnosis.用于阿尔茨海默病诊断的多模态规范特征选择
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):162-9. doi: 10.1007/978-3-319-10470-6_21.
3
Sparse Methods for Biomedical Data.生物医学数据的稀疏方法
SIGKDD Explor. 2012 Jun 1;14(1):4-15. doi: 10.1145/2408736.2408739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验