Suppr超能文献

生物医学数据的稀疏方法

Sparse Methods for Biomedical Data.

作者信息

Ye Jieping, Liu Jun

机构信息

Arizona State University Tempe, AZ 85287

出版信息

SIGKDD Explor. 2012 Jun 1;14(1):4-15. doi: 10.1145/2408736.2408739.

Abstract

Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the [Formula: see text] norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in various applications such as biomarker selection, biological network construction, and magnetic resonance imaging. In this paper, we review state-of-the-art sparse methods and their applications to biomedical data.

摘要

随着近期的技术革命,对规模不断扩大、多样性日益增加且复杂性不断提升的海量生物医学数据的研究,已在现代数据分析中占据核心地位。尽管复杂,但许多生物医学数据的底层表示往往是稀疏的。例如,对于白血病等某种疾病,尽管人类拥有数以万计的基因,但只有少数基因与该疾病相关;基因网络是稀疏的,因为调控途径仅涉及少数基因;许多生物医学信号在以适当基表示时具有简洁形式,所以是稀疏的或可压缩的。因此,找到稀疏表示对于科学发现至关重要。基于[公式:见原文]范数的稀疏方法,因其稀疏诱导特性、便利的凸性以及强大的理论保证,在过去十年中吸引了大量研究工作。它们在生物标志物选择、生物网络构建和磁共振成像等各种应用中取得了巨大成功。在本文中,我们综述了最先进的稀疏方法及其在生物医学数据中的应用。

相似文献

1
Sparse Methods for Biomedical Data.
SIGKDD Explor. 2012 Jun 1;14(1):4-15. doi: 10.1145/2408736.2408739.
2
SOFAR: Large-Scale Association Network Learning.
IEEE Trans Inf Theory. 2019 Aug;65(8):4924-4939. doi: 10.1109/tit.2019.2909889. Epub 2019 Apr 11.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Exact Gaussian processes for massive datasets via non-stationary sparsity-discovering kernels.
Sci Rep. 2023 Mar 13;13(1):3155. doi: 10.1038/s41598-023-30062-8.
6
Motor imagery classification using sparse representations: an exploratory study.
Sci Rep. 2023 Sep 20;13(1):15585. doi: 10.1038/s41598-023-42790-y.
7
Seeing All From a Few: l -Norm-Induced Discriminative Prototype Selection.
IEEE Trans Neural Netw Learn Syst. 2019 Jul;30(7):1954-1966. doi: 10.1109/TNNLS.2018.2875347. Epub 2018 Nov 2.
9
Sparse representation of group-wise FMRI signals.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):608-16. doi: 10.1007/978-3-642-40760-4_76.
10
A Benchmark for Sparse Coding: When Group Sparsity Meets Rank Minimization.
IEEE Trans Image Process. 2020 Mar 10. doi: 10.1109/TIP.2020.2972109.

引用本文的文献

1
Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks.
Nucleic Acids Res. 2023 Jul 21;51(13):6578-6592. doi: 10.1093/nar/gkad450.
2
Evolutionary Sparse Learning for Phylogenomics.
Mol Biol Evol. 2021 Oct 27;38(11):4674-4682. doi: 10.1093/molbev/msab227.
3
Application of graphical lasso in estimating network structure in gene set.
Ann Transl Med. 2020 Dec;8(23):1556. doi: 10.21037/atm-20-6490.
4
Patient similarity by joint matrix trifactorization to identify subgroups in acute myeloid leukemia.
JAMIA Open. 2018 May 14;1(1):75-86. doi: 10.1093/jamiaopen/ooy008. eCollection 2018 Jul.
5
Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data.
PLoS Comput Biol. 2019 Nov 21;15(11):e1007518. doi: 10.1371/journal.pcbi.1007518. eCollection 2019 Nov.
6
Robust clinical marker identification for diabetic kidney disease with ensemble feature selection.
J Am Med Inform Assoc. 2019 Mar 1;26(3):242-253. doi: 10.1093/jamia/ocy165.
7
Exploring diagnosis and imaging biomarkers of Parkinson's disease via iterative canonical correlation analysis based feature selection.
Comput Med Imaging Graph. 2018 Jul;67:21-29. doi: 10.1016/j.compmedimag.2018.04.002. Epub 2018 Apr 4.
8
Functional brain networks reconstruction using group sparsity-regularized learning.
Brain Imaging Behav. 2018 Jun;12(3):758-770. doi: 10.1007/s11682-017-9737-4.
9
Feature Selection Based on Iterative Canonical Correlation Analysis for Automatic Diagnosis of Parkinson's Disease.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:1-8. doi: 10.1007/978-3-319-46723-8_1. Epub 2016 Oct 2.
10
Discovery of Intermediary Genes between Pathways Using Sparse Regression.
PLoS One. 2015 Sep 8;10(9):e0137222. doi: 10.1371/journal.pone.0137222. eCollection 2015.

本文引用的文献

1
The graphical lasso: New insights and alternatives.
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.
4
The joint graphical lasso for inverse covariance estimation across multiple classes.
J R Stat Soc Series B Stat Methodol. 2014 Mar;76(2):373-397. doi: 10.1111/rssb.12033.
5
Efficient sparse modeling with automatic feature grouping.
IEEE Trans Neural Netw Learn Syst. 2012 Sep;23(9):1436-47. doi: 10.1109/TNNLS.2012.2200262.
7
Simultaneous grouping pursuit and feature selection over an undirected graph.
J Am Stat Assoc. 2013 Jan 1;108(502):713-725. doi: 10.1080/01621459.2013.770704.
8
Feature Grouping and Selection Over an Undirected Graph.
KDD. 2012:922-930. doi: 10.1145/2339530.2339675.
9
ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA.
Magn Reson Med. 2014 Mar;71(3):990-1001. doi: 10.1002/mrm.24751.
10
Joint estimation of multiple graphical models.
Biometrika. 2011 Mar;98(1):1-15. doi: 10.1093/biomet/asq060. Epub 2011 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验