Suppr超能文献

新型语音信号处理算法可实现帕金森病的高精度分类。

Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease.

机构信息

Oxford Centre for Industrial and Applied Mathematics (OCIAM), Mathematical Institute, University of Oxford, Oxford, UK.

出版信息

IEEE Trans Biomed Eng. 2012 May;59(5):1264-71. doi: 10.1109/TBME.2012.2183367. Epub 2012 Jan 9.

Abstract

There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.

摘要

近年来,人们对帕金森病(PD)与言语障碍之间的关系进行了大量研究。最近,已经提出了广泛的语音信号处理算法(发声障碍度量),旨在使用语音信号预测 PD 症状的严重程度。在本文中,我们测试了这些新算法在区分 PD 患者和健康对照方面的准确性。我们总共从持续元音中计算了 132 个发声障碍度量。然后,我们使用四种特征选择算法选择了这四个发声障碍度量的四个简约子集,并使用两种统计分类器:随机森林和支持向量机将这些特征子集映射到二进制分类响应。我们使用现有的包含 43 名患者的 263 个样本的数据库,证明了这些新的发声障碍度量可以优于最先进的结果,仅使用十个发声障碍特征即可达到近 99%的整体分类准确性。我们发现,最近提出的一些发声障碍度量方法可以补充现有的算法,从而最大限度地提高分类器区分健康对照和 PD 患者的能力。我们认为这些结果是朝着 PD 的非侵入性诊断决策支持迈出的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验