Suppr超能文献

通过实施一种结合机器学习的混合FrCN-(U-NeT)技术进行皮肤癌分割与分类。

Skin cancer segmentation and classification by implementing a hybrid FrCN-(U-NeT) technique with machine learning.

作者信息

Thapar Puneet, Rakhra Manik, Prashar Deepak, Mrsic Leo, Khan Arfat Ahmad, Kadry Seifedine

机构信息

School of Computer Science and Engineering, Lovely Professional University, Jalandhar, Punjab, India.

Jadara University Research Center, Jadara University, Irbid, Jordan.

出版信息

PLoS One. 2025 Jun 2;20(6):e0322659. doi: 10.1371/journal.pone.0322659. eCollection 2025.

Abstract

Skin cancer is a severe and rapidly advancing condition that can be impacted by multiple factors, including alcohol and tobacco use, allergies, infections, physical activity, exposure to UV light, viral infections, and the effects of climate change. While the steep death tolls continue rising at an alarming rate, lack of symptoms recognition and its preventive measures further worsen the case. In this article, we employ the ISBI-2017 dataset to present an improved FrCN-based hybrid image segmentation method with U-Net to improve detection performance. This paper proposes a hybrid approach using the FrCN-(U-Net) image segmentation technique to enhance results compared to an advanced method for detecting skin cancer types, such as Benign or Melanoma. The classification phase is then handled using the R-CNN algorithm. Our model shows better performance in both training and testing accuracy than any other existing approaches. The results show that the combined method is effective in enhancing early disease diagnosis, which in turn improves treatment outcomes and prognosis. This paper presents an alternative technique for skin cancer detection, which can serve as a guide for clinical practices and public health strategies on how to lower skin-cancer-related deaths.

摘要

皮肤癌是一种严重且发展迅速的疾病,会受到多种因素影响,包括饮酒、吸烟、过敏、感染、体育活动、紫外线照射、病毒感染以及气候变化的影响。尽管皮肤癌的高死亡率仍以惊人的速度持续上升,但症状识别的缺乏及其预防措施进一步加剧了这种情况。在本文中,我们使用ISBI - 2017数据集,提出一种基于改进的全卷积网络(FrCN)与U型网络(U - Net)相结合的混合图像分割方法,以提高检测性能。本文提出一种使用FrCN -(U - Net)图像分割技术的混合方法,与一种先进的检测皮肤癌类型(如良性或黑色素瘤)的方法相比,以增强检测结果。然后使用区域卷积神经网络(R - CNN)算法进行分类阶段的处理。我们的模型在训练和测试准确率方面均表现出优于任何其他现有方法的性能。结果表明,这种组合方法在增强疾病早期诊断方面是有效的,进而改善了治疗效果和预后。本文提出了一种用于皮肤癌检测的替代技术,可为临床实践和公共卫生策略提供关于如何降低皮肤癌相关死亡的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c78f/12129148/991466cd6c95/pone.0322659.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验