Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA.
Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA; Department of Chemical Engineering, University of Rochester, 206 Gavett Hall, Rochester, NY 14627, USA; Department of Orthopaedics, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA.
Biomaterials. 2017 Sep;139:127-138. doi: 10.1016/j.biomaterials.2017.06.001. Epub 2017 Jun 4.
Despite great potential, delivery remains as the most significant barrier to the widespread use of siRNA therapeutics. siRNA has delivery limitations due to susceptibility to RNase degradation, low cellular uptake, and poor tissue-specific localization. Here, we report the development of a hybrid nanoparticle (NP)/hydrogel system that overcomes these challenges. Hydrogels provide localized and sustained delivery via controlled release of entrapped siRNA/NP complexes while NPs protect and enable efficient cytosolic accumulation of siRNA. To demonstrate therapeutic efficacy, regenerative siRNA against WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1) complexed with NP were entrapped within poly(ethylene glycol) (PEG)-based hydrogels and implanted at sites of murine mid-diaphyseal femur fractures. Results showed localization of hydrogels and controlled release of siRNA/NPs at fractures for 28 days, a timeframe over which fracture healing occurs. siRNA/NP sustained delivery from hydrogels resulted in significant Wwp1 silencing at fracture callus compared to untreated controls. Fractures treated with siRNA/NP hydrogels exhibited accelerated bone formation and significantly increased biomechanical strength. This NP/hydrogel siRNA delivery system has outstanding therapeutic promise to augment fracture healing. Owing to the structural similarities of siRNA, the development of the hydrogel platform for in vivo siRNA delivery has myriad therapeutic possibilities in orthopaedics and beyond.
尽管具有巨大的潜力,但递送仍然是广泛应用 siRNA 治疗药物的最大障碍。由于易受核糖核酸酶降解、细胞摄取率低以及组织特异性定位不佳的影响,siRNA 的递送受到限制。在这里,我们报告了一种混合纳米粒子 (NP)/水凝胶系统的开发,该系统克服了这些挑战。水凝胶通过控释包封的 siRNA/NP 复合物提供局部和持续的递送,而 NP 则保护并使 siRNA 能够有效在细胞质中积累。为了证明治疗效果,针对 WW 结构域包含 E3 泛素蛋白连接酶 1 (Wwp1) 的再生 siRNA 与 NP 复合后被包封在聚乙二醇 (PEG) 基水凝胶中,并植入小鼠中段股骨干骨折部位。结果表明,水凝胶定位于骨折部位并持续释放 siRNA/NP 长达 28 天,这是骨折愈合发生的时间范围。与未处理的对照组相比,NP/水凝胶中 siRNA 的持续释放导致骨折痂中 Wwp1 的沉默显著。用 siRNA/NP 水凝胶治疗的骨折表现出加速的骨形成和显著增加的生物力学强度。这种 NP/水凝胶 siRNA 递药系统具有出色的治疗潜力,可以增强骨折愈合。由于 siRNA 的结构相似性,该水凝胶平台的开发为骨科及其他领域的体内 siRNA 递药提供了多种治疗可能性。