Suppr超能文献

视网膜活性氧的快速可重复体内检测

Rapid repeatable in vivo detection of retinal reactive oxygen species.

作者信息

Fan Ning, Silverman Sean M, Liu Yang, Wang Xizhen, Kim Byung-Jin, Tang Liping, Clark Abbot F, Liu Xuyang, Pang Iok-Hou

机构信息

Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, China; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.

North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.

出版信息

Exp Eye Res. 2017 Aug;161:71-81. doi: 10.1016/j.exer.2017.06.004. Epub 2017 Jun 8.

Abstract

Oxidative injuries, such as those related to reactive oxygen species (ROS), have been implicated in various retinal and optic nerve disorders. Many ROS detection methods have been developed. Although widely utilized, many of these methods are useful only in post mortem tissues, or require relatively expensive equipment, or involve intraocular injection. In the present study, we demonstrated and characterized a chemiluminescent probe L-012 as a noninvasive, in vivo ROS detection agent in the mouse retina. Using optic nerve crush (ONC) and retinal ischemia/reperfusion (I/R) as injury models, we show that L-012 produced intensive luminescent signals specifically in the injured eyes. Histological examination showed that L-012 administration was safe to the retina. Additionally, compounds that reduce tissue superoxide levels, apocynin and TEMPOL, decreased injury-induced L-012 chemiluminescence. The decrease in L-012 signals correlated with their protective effects against retinal I/R-induced morphological and functional changes in the retina. Together, these data demonstrate the feasibility of a fast, simple, reproducible, and non-invasive detection method to monitor in vivo ROS in the retina. Furthermore, the results also show that reduction of ROS is a potential therapeutic approach for protection from these retinal injuries.

摘要

氧化损伤,如与活性氧(ROS)相关的损伤,已被认为与各种视网膜和视神经疾病有关。人们已经开发出许多ROS检测方法。尽管这些方法被广泛使用,但其中许多方法仅适用于死后组织,或需要相对昂贵的设备,或涉及眼内注射。在本研究中,我们证明并表征了化学发光探针L-012作为一种用于小鼠视网膜的非侵入性体内ROS检测剂。使用视神经挤压(ONC)和视网膜缺血/再灌注(I/R)作为损伤模型,我们表明L-012在受伤眼睛中特异性地产生强烈的发光信号。组织学检查表明,给予L-012对视网膜是安全的。此外,降低组织超氧化物水平的化合物,即Apocynin和TEMPOL,可降低损伤诱导的L-012化学发光。L-012信号的降低与其对视网膜I/R诱导的视网膜形态和功能变化的保护作用相关。总之,这些数据证明了一种快速、简单、可重复且非侵入性的检测方法用于监测视网膜内体内ROS的可行性。此外,结果还表明,降低ROS是预防这些视网膜损伤的一种潜在治疗方法。

相似文献

1
Rapid repeatable in vivo detection of retinal reactive oxygen species.
Exp Eye Res. 2017 Aug;161:71-81. doi: 10.1016/j.exer.2017.06.004. Epub 2017 Jun 8.
4
Roots of Lithospermum erythrorhizon promotes retinal cell survival in optic nerve crush-induced retinal degeneration.
Exp Eye Res. 2021 Feb;203:108419. doi: 10.1016/j.exer.2020.108419. Epub 2020 Dec 28.
5
6
Monitoring retinal morphologic and functional changes in mice following optic nerve crush.
Invest Ophthalmol Vis Sci. 2014 May 22;55(6):3766-74. doi: 10.1167/iovs.14-13895.
7
Myeloid differentiation protein 2 induced retinal ischemia reperfusion injury via upregulation of ROS through a TLR4-NOX4 pathway.
Toxicol Lett. 2018 Jan 5;282:109-120. doi: 10.1016/j.toxlet.2017.10.018. Epub 2017 Oct 27.
8
In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012.
Free Radic Biol Med. 2009 Sep 15;47(6):760-6. doi: 10.1016/j.freeradbiomed.2009.06.013. Epub 2009 Jun 17.
9
Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice.
Am J Physiol Renal Physiol. 2010 Jan;298(1):F158-66. doi: 10.1152/ajprenal.00474.2009. Epub 2009 Oct 28.
10
Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):487-92. doi: 10.1167/iovs.09-4089. Epub 2009 Oct 15.

引用本文的文献

1
Injectable, Antioxidative, and Tissue-Adhesive Nanocomposite Hydrogel as a Potential Treatment for Inner Retina Injuries.
Adv Sci (Weinh). 2024 Mar;11(11):e2308635. doi: 10.1002/advs.202308635. Epub 2024 Jan 17.
2
Delivery of Lipid Nanoparticles with ROS Probes for Improved Visualization of Hepatocellular Carcinoma.
Biomedicines. 2023 Jun 21;11(7):1783. doi: 10.3390/biomedicines11071783.
4
Effects of Resveratrol on Vascular Function in Retinal Ischemia-Reperfusion Injury.
Antioxidants (Basel). 2023 Apr 1;12(4):853. doi: 10.3390/antiox12040853.
7
Protective limb remote ischemic post-conditioning against high-intraocular-pressure-induced retinal injury in mice.
Int J Ophthalmol. 2022 Apr 18;15(4):560-567. doi: 10.18240/ijo.2022.04.06. eCollection 2022.
8
mTORC1 Activation in -Specific Knockout Mice Accelerates Retina Aging and Degeneration.
Oxid Med Cell Longev. 2021 Nov 5;2021:6715758. doi: 10.1155/2021/6715758. eCollection 2021.
9
Betulinic Acid Protects from Ischemia-Reperfusion Injury in the Mouse Retina.
Cells. 2021 Sep 16;10(9):2440. doi: 10.3390/cells10092440.
10
Elemental iron modifies the redox environment of the gastrointestinal tract: A novel therapeutic target and test for metabolic syndrome.
Free Radic Biol Med. 2021 May 20;168:203-213. doi: 10.1016/j.freeradbiomed.2021.03.032. Epub 2021 Apr 5.

本文引用的文献

2
MRI of Retinal Free Radical Production With Laminar Resolution In Vivo.
Invest Ophthalmol Vis Sci. 2016 Feb;57(2):577-85. doi: 10.1167/iovs.15-18972.
3
Measuring In Vivo Free Radical Production by the Outer Retina.
Invest Ophthalmol Vis Sci. 2015 Dec;56(13):7931-8. doi: 10.1167/iovs.15-18420.
4
Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.
Neurochem Int. 2016 Jan;92:1-12. doi: 10.1016/j.neuint.2015.11.003. Epub 2015 Nov 22.
5
Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina.
Ophthalmic Res. 2015;54(3):157-68. doi: 10.1159/000439026. Epub 2015 Oct 6.
6
In Vivo Imaging of Retinal Oxidative Stress Using a Reactive Oxygen Species-Activated Fluorescent Probe.
Invest Ophthalmol Vis Sci. 2015 Sep;56(10):5862-70. doi: 10.1167/iovs.15-16810.
7
Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death.
Mol Neurodegener. 2015 Aug 26;10:40. doi: 10.1186/s13024-015-0039-2.
8
Quercetin protects the retina by reducing apoptosis due to ischemia-reperfusion injury in a rat model.
Arq Bras Oftalmol. 2015 Mar-Apr;78(2):100-4. doi: 10.5935/0004-2749.20150026.
10
Quercetin protects gastric epithelial cell from oxidative damage in vitro and in vivo.
Eur J Pharmacol. 2015 May 5;754:115-24. doi: 10.1016/j.ejphar.2015.02.007. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验