Jayender J, Vosburgh K G, Gombos E, Ashraf A, Kontos D, Gavenonis S C, Jolesz F A, Pohl K
Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104.
Proc IEEE Int Symp Biomed Imaging. 2012 May;2012:122-125. doi: 10.1109/ISBI.2012.6235499. Epub 2012 Jul 12.
Segmenting regions of high angiogenic activity corresponding to malignant tumors from DCE-MRI is a time-consuming task requiring processing of data in 4 dimensions. Quantitative analyses developed thus far are highly sensitive to external factors and are valid only under certain operating assumptions, which need not be valid for breast carcinomas. In this paper, we have developed a novel Statistical Learning Algorithm for Tumor Segmentation (SLATS) for automatically segmenting cancer from a region selected by the user on DCE-MRI. In this preliminary study, SLATS appears to demonstrate high accuracy (78%) and sensitivity (100%) in segmenting cancers from DCE-MRI when compared to segmentations performed by an expert radiologist. This may be a useful tool for delineating tumors for image-guided interventions.
从动态对比增强磁共振成像(DCE-MRI)中分割出与恶性肿瘤相对应的高血管生成活性区域是一项耗时的任务,需要对四维数据进行处理。迄今为止开发的定量分析对外部因素高度敏感,并且仅在某些操作假设下有效,而这些假设对于乳腺癌可能并不成立。在本文中,我们开发了一种新颖的肿瘤分割统计学习算法(SLATS),用于从用户在DCE-MRI上选择的区域中自动分割出癌症。在这项初步研究中,与专家放射科医生进行的分割相比,SLATS在从DCE-MRI中分割癌症时似乎显示出高准确性(78%)和敏感性(100%)。这可能是一种用于在图像引导干预中描绘肿瘤的有用工具。