Suppr超能文献

基于统计学习算法的原位与浸润性乳腺癌分割。

Statistical Learning Algorithm for in situ and invasive breast carcinoma segmentation.

机构信息

Surgical Planning Laboratory, Department of Breast Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Comput Med Imaging Graph. 2013 Jun;37(4):281-92. doi: 10.1016/j.compmedimag.2013.04.003. Epub 2013 May 19.

Abstract

Dynamic Contrast Enhanced MRI (DCE-MRI) has proven to be a highly sensitive imaging modality in diagnosing breast cancers. However, analyzing the DCE-MRI is time-consuming and prone to errors due to the large volume of data. Mathematical models to quantify contrast perfusion, such as the black box methods and pharmacokinetic analysis, are inaccurate, sensitive to noise and depend on a large number of external factors such as imaging parameters, patient physiology, arterial input function, and fitting algorithms, leading to inaccurate diagnosis. In this paper, we have developed a novel Statistical Learning Algorithm for Tumor Segmentation (SLATS) based on Hidden Markov Models to auto-segment regions of angiogenesis, corresponding to tumor. The SLATS algorithm has been trained to identify voxels belonging to the tumor class using the time-intensity curve, first and second derivatives of the intensity curves ("velocity" and "acceleration" respectively) and a composite vector consisting of a concatenation of the intensity, velocity and acceleration vectors. The results of SLATS trained for the four vectors has been shown for 22 Invasive Ductal Carcinoma (IDC) and 19 Ductal Carcinoma In Situ (DCIS) cases. The SLATS trained for the velocity tuple shows the best performance in delineating the tumors when compared with the segmentation performed by an expert radiologist and the output of a commercially available software, CADstream.

摘要

动态对比增强磁共振成像(DCE-MRI)已被证明是一种高度敏感的诊断乳腺癌的成像方式。然而,由于数据量庞大,分析 DCE-MRI 既耗时又容易出错。用于量化对比灌注的数学模型,如黑盒方法和药代动力学分析,不够准确,对噪声敏感,并且依赖于许多外部因素,如成像参数、患者生理、动脉输入函数和拟合算法,从而导致诊断不准确。在本文中,我们开发了一种基于隐马尔可夫模型的肿瘤分割统计学习算法(SLATS),用于自动分割血管生成区域,对应于肿瘤。该 SLATS 算法经过训练,使用时间-强度曲线、强度曲线的一阶和二阶导数(分别为“速度”和“加速度”)以及由强度、速度和加速度向量串联组成的复合向量来识别属于肿瘤类别的体素。针对 22 例浸润性导管癌(IDC)和 19 例导管原位癌(DCIS)病例,展示了针对这四个向量进行训练的 SLATS 的结果。与由专家放射科医生进行的分割以及商用软件 CADstream 的输出相比,针对速度元组进行训练的 SLATS 在描绘肿瘤方面表现出最佳性能。

相似文献

1
Statistical Learning Algorithm for in situ and invasive breast carcinoma segmentation.基于统计学习算法的原位与浸润性乳腺癌分割。
Comput Med Imaging Graph. 2013 Jun;37(4):281-92. doi: 10.1016/j.compmedimag.2013.04.003. Epub 2013 May 19.

本文引用的文献

4
On the scope and interpretation of the Tofts models for DCE-MRI.关于 DCE-MRI 的 Tofts 模型的范围和解释。
Magn Reson Med. 2011 Sep;66(3):735-45. doi: 10.1002/mrm.22861. Epub 2011 Mar 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验