Suppr超能文献

MoS/金属接触中的缺陷主导电荷输运和费米能级钉扎。

Defect Dominated Charge Transport and Fermi Level Pinning in MoS/Metal Contacts.

机构信息

Physics of Interfaces and Nanomaterials and ‡Physics of Fluids and J.M. Burgers Centre for Fluid Mechanics, MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500AE Enschede, The Netherlands.

出版信息

ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19278-19286. doi: 10.1021/acsami.7b02739. Epub 2017 May 24.

Abstract

Understanding the electronic contact between molybdenum disulfide (MoS) and metal electrodes is vital for the realization of future MoS-based electronic devices. Natural MoS has the drawback of a high density of both metal and sulfur defects and impurities. We present evidence that subsurface metal-like defects with a density of ∼10 cm induce negative ionization of the outermost S atom complex. We investigate with high-spatial-resolution surface characterization techniques the effect of these defects on the local conductance of MoS. Using metal nanocontacts (contact area < 6 nm), we find that subsurface metal-like defects (and not S-vacancies) drastically decrease the metal/MoS Schottky barrier height as compared to that in the pristine regions. The magnitude of this decrease depends on the contact metal. The decrease of the Schottky barrier height is attributed to strong Fermi level pinning at the defects. Indeed, this is demonstrated in the measured pinning factor, which is equal to ∼0.1 at defect locations and ∼0.3 at pristine regions. Our findings are in good agreement with the theoretically predicted values. These defects provide low-resistance conduction paths in MoS-based nanodevices and will play a prominent role as the device junction contact area decreases in size.

摘要

理解二硫化钼(MoS)与金属电极之间的电子接触对于实现未来基于 MoS 的电子设备至关重要。天然 MoS 存在金属和硫缺陷以及杂质密度高的缺点。我们提供的证据表明,密度约为 10 cm 的亚表面类金属缺陷会引起最外层 S 原子络合物的负离子化。我们使用高空间分辨率的表面特性技术研究了这些缺陷对 MoS 局部电导率的影响。使用金属纳米触点(接触面积 < 6nm),我们发现与原始区域相比,亚表面类金属缺陷(而不是 S 空位)会大大降低金属/MoS 肖特基势垒高度。这种降低幅度取决于接触金属。肖特基势垒高度的降低归因于缺陷处的强费米能级钉扎。实际上,这在测量的钉扎因子中得到了证明,在缺陷位置处约为 0.1,在原始区域处约为 0.3。我们的发现与理论预测值非常吻合。这些缺陷在 MoS 基纳米器件中提供了低电阻传导路径,并且随着器件结接触面积的减小,它们将发挥突出作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f420/5465510/e2e6a4ad0aeb/am-2017-027399_0005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验