Suppr超能文献

MLL2而非MLL1在维持MLL重排的急性髓系白血病中起主要作用。

MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia.

作者信息

Chen Yufei, Anastassiadis Konstantinos, Kranz Andrea, Stewart A Francis, Arndt Kathrin, Waskow Claudia, Yokoyama Akihiko, Jones Kenneth, Neff Tobias, Lee Yoo, Ernst Patricia

机构信息

Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.

Genomics and Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Tatzberg 47, Dresden 01307, Germany.

出版信息

Cancer Cell. 2017 Jun 12;31(6):755-770.e6. doi: 10.1016/j.ccell.2017.05.002.

Abstract

The MLL1 histone methyltransferase gene undergoes many distinct chromosomal rearrangements to yield poor-prognosis leukemia. The remaining wild-type allele is most commonly, but not always, retained. To what extent the wild-type allele contributes to leukemogenesis is unclear. Here we show, using rigorous, independent animal models, that endogenous MLL1 is dispensable for MLL-rearranged leukemia. Potential redundancy was addressed by co-deleting the closest paralog, Mll2. Surprisingly, Mll2 deletion alone had a significant impact on survival of MLL-AF9-transformed cells, and additional Mll1 loss further reduced viability and proliferation. We show that MLL1/MLL2 collaboration is not through redundancy, but regulation of distinct pathways. These findings highlight the relevance of MLL2 as a drug target in MLL-rearranged leukemia and suggest its broader significance in AML.

摘要

MLL1组蛋白甲基转移酶基因会发生许多不同的染色体重排,从而导致预后不良的白血病。剩余的野生型等位基因最常见但并非总是保留下来。野生型等位基因在多大程度上促成白血病发生尚不清楚。在此,我们使用严格、独立的动物模型表明,内源性MLL1对于MLL重排白血病是可有可无的。通过共同缺失最接近的旁系同源基因Mll2来解决潜在的冗余问题。令人惊讶的是,单独缺失Mll2对MLL-AF9转化细胞的存活有显著影响,而额外缺失Mll1会进一步降低细胞活力和增殖。我们表明,MLL1/MLL2的协作并非通过冗余,而是对不同途径的调控。这些发现突出了MLL2作为MLL重排白血病药物靶点的相关性,并表明其在急性髓系白血病中具有更广泛的意义。

相似文献

1
MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia.
Cancer Cell. 2017 Jun 12;31(6):755-770.e6. doi: 10.1016/j.ccell.2017.05.002.
2
Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia.
Exp Hematol. 2019 Jan;69:37-42. doi: 10.1016/j.exphem.2018.10.001. Epub 2018 Oct 10.
3
Hematopoietic transformation in the absence of MLL1/KMT2A: distinctions in target gene reactivation.
Cell Cycle. 2019 Jul;18(14):1525-1531. doi: 10.1080/15384101.2019.1618642. Epub 2019 Jun 4.
5
ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia.
Oncotarget. 2017 Apr 18;8(16):26129-26141. doi: 10.18632/oncotarget.15387.
6
Identification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia.
Cancer Lett. 2016 Mar 28;372(2):157-65. doi: 10.1016/j.canlet.2015.12.032. Epub 2016 Jan 11.
7
Human CpG binding protein interacts with MLL1, MLL2 and hSet1 and regulates Hox gene expression.
Biochim Biophys Acta. 2008 Jan;1779(1):66-73. doi: 10.1016/j.bbagrm.2007.11.006. Epub 2007 Dec 3.
8
The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML.
Blood. 2022 Feb 10;139(6):894-906. doi: 10.1182/blood.2021012806.

引用本文的文献

3
Inflammatory signaling pathways play a role in SYK inhibitor resistant AML.
Sci Rep. 2025 Apr 5;15(1):11673. doi: 10.1038/s41598-025-96660-w.
4
Loss of SMAD1 in acute myeloid leukemia with and fusion genes.
Front Oncol. 2025 Jan 6;14:1481713. doi: 10.3389/fonc.2024.1481713. eCollection 2024.
5
MLL/WDR5 complex recruits centriolar satellite protein Cep72 to regulate microtubule nucleation and spindle formation.
Sci Adv. 2024 Dec 13;10(50):eadn0086. doi: 10.1126/sciadv.adn0086. Epub 2024 Dec 11.
6
Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation.
J Biol Chem. 2024 Nov;300(11):107825. doi: 10.1016/j.jbc.2024.107825. Epub 2024 Sep 27.
7
HOXA9 Regulome and Pharmacological Interventions in Leukemia.
Adv Exp Med Biol. 2024;1459:405-430. doi: 10.1007/978-3-031-62731-6_18.
9
WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think.
J Clin Med. 2024 Jan 3;13(1):274. doi: 10.3390/jcm13010274.

本文引用的文献

1
NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis.
Cancer Cell. 2016 Dec 12;30(6):863-878. doi: 10.1016/j.ccell.2016.10.019. Epub 2016 Nov 23.
2
Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche.
Cell Stem Cell. 2016 Jul 7;19(1):23-37. doi: 10.1016/j.stem.2016.06.001. Epub 2016 Jun 30.
3
Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells.
Genes Dev. 2016 Jun 1;30(11):1278-88. doi: 10.1101/gad.280495.116. Epub 2016 Jun 2.
4
ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia.
Cancer Discov. 2016 Jul;6(7):770-83. doi: 10.1158/2159-8290.CD-16-0058. Epub 2016 May 6.
5
MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia.
J Clin Invest. 2016 Apr 1;126(4):1438-50. doi: 10.1172/JCI80825. Epub 2016 Feb 29.
6
The molecular mechanics of mixed lineage leukemia.
Oncogene. 2016 Oct 6;35(40):5215-5223. doi: 10.1038/onc.2016.30. Epub 2016 Feb 29.
7
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
Nat Biotechnol. 2015 Jun;33(6):661-7. doi: 10.1038/nbt.3235. Epub 2015 May 11.
8
Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo.
Cancer Cell. 2015 Apr 13;27(4):589-602. doi: 10.1016/j.ccell.2015.02.016. Epub 2015 Mar 26.
9
Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation.
J Biol Chem. 2015 Mar 6;290(10):6361-75. doi: 10.1074/jbc.M114.627646. Epub 2015 Jan 5.
10
CD123 and its potential clinical application in leukemias.
Life Sci. 2015 Feb 1;122:59-64. doi: 10.1016/j.lfs.2014.10.013. Epub 2014 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验