Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
The George Washington University, Washington, DC, United States of America.
PLoS One. 2020 May 11;15(5):e0231695. doi: 10.1371/journal.pone.0231695. eCollection 2020.
We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6-10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.
我们提出了一种新颖的遗传算法(GA)修改方法,该方法基于在不同心率下记录的一组实验人心动周期(AP)来确定心肌细胞电生理学模型的个性化参数。为了找到稳态解,优化算法在参数和慢变量空间中同时进行搜索。我们证明了需要几种 GA 修改才能有效收敛。首先,我们在参数空间中沿随机方向使用 Cauchy 突变。其次,为了有效收敛,需要相对较多的精英生物(种群的 6-10%传递给下一代)。使用合成 AP 作为输入数据的测试运行表明,算法误差对于高振幅离子电流较低(IKr 为 1.6±1.6%,IK1 为 3.2±3.5%,INa 为 3.9±3.5%,ICaL 为 8.2±6.3%)。高质量 GA 性能需要信号噪声比大于 28 dB。GA 经过了人心室 AP 的光学映射记录和供体心脏 mRNA 表达谱的验证。特别是,GA 的输出参数与患者之间的 mRNA 水平比例成比例地进行了缩放。我们已经证明,基于 mRNA 的模型可以高精度预测 AP 波形对心率的依赖性。后者还提供了一种新颖的模型个性化技术,使我们能够将基因表达谱映射到心脏功能上。