Havsteen Inger, Ohlhues Anders, Madsen Kristoffer H, Nybing Janus Damm, Christensen Hanne, Christensen Anders
Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
Department of Clinical Engineering Diagnostic Imaging Section, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
Front Neurol. 2017 May 30;8:232. doi: 10.3389/fneur.2017.00232. eCollection 2017.
Movement artifacts compromise image quality and may interfere with interpretation, especially in magnetic resonance imaging (MRI) applications with low signal-to-noise ratio such as functional MRI or diffusion tensor imaging, and when imaging small lesions. High image resolution has high sensitivity to motion artifacts and often prolongs scan time that again aggravates movement artifacts. During the scan fast imaging techniques and sequences, optimal receiver coils, careful patient positioning, and instruction may minimize movement artifacts. Physiological noise sources are motion from respiration, flow and pulse coupled to cardiac cycles, from the swallowing reflex and small spontaneous head movements. Par example, in resting-state functional MRI spontaneous neuronal activity adds 1-2% of signal change, even under optimal conditions signal contributions from physiological noise remain a considerable fraction hereof. Movement tracking during imaging may allow for prospective correction or postprocessing steps separating signal and noise.
运动伪影会降低图像质量,并可能干扰图像解读,尤其是在诸如功能磁共振成像(fMRI)或扩散张量成像等信噪比低的磁共振成像(MRI)应用中,以及在对小病变进行成像时。高图像分辨率对运动伪影高度敏感,并且通常会延长扫描时间,这又会加剧运动伪影。在扫描快速成像技术和序列期间,使用最佳接收线圈、仔细的患者定位和指导可以最大程度地减少运动伪影。生理噪声源包括呼吸、血流和与心动周期相关的脉搏运动、吞咽反射以及头部的小幅度自发运动。例如,在静息态功能磁共振成像中,即使在最佳条件下,自发神经元活动也会增加1% - 2%的信号变化,生理噪声的信号贡献在此仍占相当大的比例。成像过程中的运动跟踪可以实现前瞻性校正或进行信号与噪声分离的后处理步骤。