Kalantari Aref, Shahbazi Mehrab, Schneider Marc, Raikes Adam C, Frazão Victor Vera, Bhattrai Avnish, Carnevale Lorenzo, Diao Yujian, Franx Bart A A, Gammaraccio Francesco, Goncalves Lisa-Marie, Lee Susan, van Leeuwen Esther M, Michalek Annika, Mueller Susanne, Olvera Alejandro Rivera, Padro Daniel, Selim Mohamed Kotb, van der Toorn Annette, Varriano Federico, Vrooman Roël, Wenk Patricia, Albers H Elliott, Boehm-Sturm Philipp, Budinger Eike, Canals Santiago, De Santis Silvia, Brinton Roberta Diaz, Dijkhuizen Rick M, Eixarch Elisenda, Forloni Gianluigi, Grandjean Joanes, Hekmatyar Khan, Jacobs Russell E, Jelescu Ileana, Kurniawan Nyoman D, Lembo Giuseppe, Longo Dario Livio, Maria Naomi S Sta, Micotti Edoardo, Muñoz-Moreno Emma, Ramos-Cabrer Pedro, Reichardt Wilfried, Soria Guadalupe, Ielacqua Giovanna D, Aswendt Markus
University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.
Hamedan University of Technology, Faculty of Medical Engineering, Hamedan, Iran.
Imaging Neurosci (Camb). 2024 Oct 17;2:1-23. doi: 10.1162/imag_a_00317. eCollection 2024 Oct 1.
Magnetic resonance imaging (MRI) is a valuable tool for studying brain structure and function in animal and clinical studies. With the growth of public MRI repositories, access to data has finally become easier. However, filtering large datasets for potential poor-quality outliers can be a challenge. We present AIDAqc, a machine-learning-assisted automated Python-based command-line tool for small animal MRI quality assessment. Quality control features include signal-to-noise ratio (SNR), temporal SNR, and motion. All features are automatically calculated and no regions of interest are needed. Automated outlier detection for a given dataset combines the interquartile range and the machine-learning methods one-class support vector machine, isolation forest, local outlier factor, and elliptic envelope. To evaluate the reliability of individual quality control metrics, a simulation of noise (Gaussian, salt and pepper, speckle) and motion was performed. In outlier detection, single scans with induced artifacts were successfully identified by AIDAqc. AIDAqc was challenged in a large heterogeneous dataset collected from 19 international laboratories, including data from mice, rats, rabbits, hamsters, and gerbils, obtained with different hardware and at different field strengths. The results show that the manual inter-rater agreement (mean Fleiss Kappa score 0.17) is low when identifying poor-quality data. A direct comparison of AIDAqc results, therefore, showed only low-to-moderate concordance. In a manual post hoc validation of AIDAqc output, precision was high (>70%). The outlier data can have a significant impact on further postprocessing, as shown in representative functional and structural connectivity analysis. In summary, this pipeline optimized for small animal MRI provides researchers with a valuable tool to efficiently and effectively assess the quality of their MRI data, which is essential for improved reliability and reproducibility.
磁共振成像(MRI)是在动物和临床研究中用于研究脑结构和功能的重要工具。随着公共MRI数据库的不断增加,数据获取终于变得更加容易。然而,在大型数据集中筛选潜在的低质量异常值可能是一项挑战。我们展示了AIDAqc,这是一种基于机器学习辅助的、自动化的、基于Python的命令行工具,用于小动物MRI质量评估。质量控制特征包括信噪比(SNR)、时间SNR和运动。所有特征均自动计算,无需感兴趣区域。针对给定数据集的自动异常值检测结合了四分位距和机器学习方法,即单类支持向量机、孤立森林、局部异常因子和椭圆包络。为了评估各个质量控制指标的可靠性,进行了噪声(高斯噪声、椒盐噪声、斑点噪声)和运动的模拟。在异常值检测中,AIDAqc成功识别出了带有诱导伪影的单次扫描。AIDAqc在一个来自19个国际实验室的大型异构数据集中接受了挑战,该数据集包括从小鼠、大鼠、兔子、仓鼠和沙鼠获得的数据,这些数据是使用不同硬件并在不同场强下获取的。结果表明,在识别低质量数据时,人工评分者间的一致性(平均Fleiss Kappa分数为0.17)较低。因此,AIDAqc结果的直接比较仅显示出低到中等程度的一致性。在对AIDAqc输出的人工事后验证中,精度很高(>70%)。如代表性的功能和结构连接性分析所示,异常值数据可能会对进一步的后处理产生重大影响。总之,这个针对小动物MRI优化的流程为研究人员提供了一个有价值的工具,以高效且有效地评估其MRI数据的质量,这对于提高可靠性和可重复性至关重要。