IEEE J Biomed Health Inform. 2021 Jun;25(6):1938-1948. doi: 10.1109/JBHI.2020.3035776. Epub 2021 Jun 4.
Continuous monitoring of breathing rate (BR), minute ventilation (VE), and other respiratory parameters could transform care for and empower patients with chronic cardio-pulmonary conditions, such as asthma. However, the clinical standard for measuring respiration, namely Spirometry, is hardly suitable for continuous use. Wearables can track many physiological signals, like ECG and motion, yet respiration tracking faces many challenges. In this work, we infer respiratory parameters from wearable ECG and wrist motion signals. We propose a modular and generalizable classification-regression pipeline to utilize available context information, such as physical activity, in learning context-conditioned inference models. Novel morphological and power domain features from the wearable ECG are extracted to use with these models. Exploratory feature selection methods are incorporated in this pipeline to discover application-driven interpretable biomarkers. Using data from 15 subjects, we evaluate two implementations of the proposed inference pipeline: for BR and VE. Each implementation compares generalized linear model, random forest, support vector machine, Gaussian process regression, and neighborhood component analysis as regression models. Permutation, regularization, and relevance determination methods are used to rank the ECG features to identify robust ECG biomarkers across models and activities. This work demonstrates the potential of wearable sensors not only in continuous monitoring, but also in designing biomarker-driven preventive measures.
连续监测呼吸频率(BR)、分钟通气量(VE)和其他呼吸参数,可以改变对哮喘等慢性心肺疾病患者的护理方式,为其赋能。然而,测量呼吸的临床标准——肺活量测定法,几乎不适合连续使用。可穿戴设备可以跟踪许多生理信号,如心电图和运动,但呼吸跟踪面临许多挑战。在这项工作中,我们从可穿戴式心电图和手腕运动信号中推断出呼吸参数。我们提出了一个模块化和可推广的分类-回归管道,以利用可用的上下文信息(如身体活动),学习上下文条件下的推理模型。从可穿戴式心电图中提取新的形态和功率域特征,并将这些特征与这些模型一起使用。该管道中还纳入了探索性特征选择方法,以发现适用于应用的可解释生物标志物。我们使用来自 15 名受试者的数据,评估了所提出的推理管道的两种实现:用于 BR 和 VE。每个实现都将广义线性模型、随机森林、支持向量机、高斯过程回归和邻域成分分析作为回归模型进行比较。我们使用置换、正则化和相关性确定方法对 ECG 特征进行排序,以在模型和活动中识别稳健的 ECG 生物标志物。这项工作不仅展示了可穿戴传感器在连续监测方面的潜力,还展示了其在设计基于生物标志物的预防措施方面的潜力。