Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, Université de Rennes 1, 35042, Rennes, France.
Aix Marseille Université, LISA EA4672, Campus scientifique de Saint Jérôme, 13397, Marseille, France.
Sci Rep. 2017 Jun 14;7(1):3500. doi: 10.1038/s41598-017-03678-w.
The development of the optical bio-chemical sensing technology is an extremely important scientific and technological issue for diagnosis and monitoring of diseases, control of industrial processes, environmental detection of air and water pollutants. Owing to their distinctive features, chalcogenide amorphous thin films represent a keystone in the manufacture of middle infrared integrated optical devices for a sensitive detection of biological or environmental variations. Since the chalcogenide thin films characteristics, i.e. stoichiometric conformity, structure, roughness or optical properties can be affected by the growth process, the choice and control of the deposition method is crucial. An approach based on the experimental design is undoubtedly a way to be explored allowing fast optimization of chalcogenide film deposition by means of radio frequency sputtering process. Argon (Ar) pressure, working power and deposition time were selected as potentially the most influential factors among all possible. The experimental design analysis confirms the great influence of the Ar pressure on studied responses: chemical composition, refractive index in near-IR (1.55 µm) and middle infrared (6.3 and 7.7 µm), band-gap energy, deposition rate and surface roughness. Depending on the intended application and therefore desired thin film characteristics, mappings of the experimental design meaningfully help to select suitable deposition parameters.
光学生物化学传感技术的发展是诊断和监测疾病、控制工业过程、检测空气和水中污染物的一个极其重要的科学和技术问题。由于具有独特的特性,硫属非晶态薄膜代表了制造用于敏感检测生物或环境变化的中红外集成光学器件的关键。由于薄膜的特性,例如化学计量一致性、结构、粗糙度或光学性能可能会受到生长过程的影响,因此选择和控制沉积方法至关重要。基于实验设计的方法无疑是一种可以探索的方法,通过射频溅射工艺快速优化硫属化物薄膜的沉积。氩气 (Ar) 压力、工作功率和沉积时间被选为所有可能因素中最具影响力的因素。实验设计分析证实了 Ar 压力对研究响应的巨大影响:化学成分、近红外 (1.55μm) 和中红外 (6.3 和 7.7μm) 的折射率、带隙能量、沉积速率和表面粗糙度。根据预期的应用和因此所需的薄膜特性,实验设计的映射有助于选择合适的沉积参数。