Majikes Jacob M, Ferraz Lucas C C, LaBean Thomas H
North Carolina State University , Raleigh, North Carolina 27695, United States.
Universidade Federal do ABC , Santo André 09210-580, Brazil.
Bioconjug Chem. 2017 Jul 19;28(7):1821-1825. doi: 10.1021/acs.bioconjchem.7b00288. Epub 2017 Jun 27.
As bottom up DNA nanofabrication creates increasingly complex and dynamic mechanisms, the implementation of actuators within the DNA nanotechnology toolkit has grown increasingly important. One such actuator, the I-motif, is fairly simple in that it consists solely of standard DNA sequences and does not require any modification chemistry or special purification beyond that typical for DNA oligomer synthesis. This study presents a new implementation of parallel I-motif actuators, emphasizing their future potential as drivers of complex internal motion between substructures. Here we characterize internal motion between DNA origami substructures via AFM and image analysis. Such parallel I-motif design and quantification of actuation provide a useful step toward more complex and effective molecular machines.
随着自下而上的DNA纳米制造创造出越来越复杂和动态的机制,DNA纳米技术工具包中致动器的应用变得越来越重要。其中一种致动器,即I-基序,相当简单,它仅由标准DNA序列组成,除了DNA寡聚物合成所需的常规方法外,不需要任何修饰化学或特殊纯化。本研究展示了平行I-基序致动器的一种新应用,强调了它们作为子结构间复杂内部运动驱动因素的未来潜力。在这里,我们通过原子力显微镜(AFM)和图像分析来表征DNA折纸子结构之间的内部运动。这种平行I-基序的设计和致动量化为构建更复杂、更有效的分子机器迈出了有益的一步。