Välkki Inkeri A, Lenk Kerstin, Mikkonen Jarno E, Kapucu Fikret E, Hyttinen Jari A K
BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of TechnologyTampere, Finland.
Department of Computer Science and Information Systems, University of JyväskyläJyväskylä, Finland.
Front Comput Neurosci. 2017 May 31;11:40. doi: 10.3389/fncom.2017.00040. eCollection 2017.
Neuronal networks are often characterized by their spiking and bursting statistics. Previously, we introduced an adaptive burst analysis method which enhances the analysis power for neuronal networks with highly varying firing dynamics. The adaptation is based on single channels analyzing each element of a network separately. Such kind of analysis was adequate for the assessment of local behavior, where the analysis focuses on the neuronal activity in the vicinity of a single electrode. However, the assessment of the whole network may be hampered, if parts of the network are analyzed using different rules. Here, we test how using multiple channels and measurement time points affect adaptive burst detection. The main emphasis is, if network-wide adaptive burst detection can provide new insights into the assessment of network activity. Therefore, we propose a modification to the previously introduced inter-spike interval (ISI) histogram based cumulative moving average (CMA) algorithm to analyze multiple spike trains simultaneously. The network size can be freely defined, e.g., to include all the electrodes in a microelectrode array (MEA) recording. Additionally, the method can be applied on a series of measurements on the same network to pool the data for statistical analysis. Firstly, we apply both the original CMA-algorithm and our proposed network-wide CMA-algorithm on artificial spike trains to investigate how the modification changes the burst detection. Thereafter, we use the algorithms on MEA data of spontaneously active chemically manipulated rat cortical networks. Moreover, we compare the synchrony of the detected bursts introducing a new burst synchrony measure. Finally, we demonstrate how the bursting statistics can be used to classify networks by applying k-means clustering to the bursting statistics. The results show that the proposed network wide adaptive burst detection provides a method to unify the burst definition in the whole network and thus improves the assessment and classification of the neuronal activity, e.g., the effects of different pharmaceuticals. The results indicate that the novel method is adaptive enough to be usable on networks with different dynamics, and it is especially feasible when comparing the behavior of differently spiking networks, for example in developing networks.
神经元网络通常以其发放尖峰和爆发的统计特性为特征。此前,我们介绍了一种自适应爆发分析方法,该方法增强了对具有高度变化发放动态的神经元网络的分析能力。这种自适应基于单通道分别分析网络的每个元素。此类分析对于评估局部行为是足够的,其中分析聚焦于单个电极附近的神经元活动。然而,如果使用不同规则分析网络的各个部分,可能会妨碍对整个网络的评估。在此,我们测试使用多个通道和测量时间点如何影响自适应爆发检测。主要重点在于,全网络自适应爆发检测是否能为网络活动评估提供新的见解。因此,我们对先前引入的基于峰峰间隔(ISI)直方图的累积移动平均(CMA)算法提出一种修改,以便同时分析多个尖峰序列。网络大小可以自由定义,例如,包括微电极阵列(MEA)记录中的所有电极。此外,该方法可应用于对同一网络的一系列测量,以汇总数据进行统计分析。首先,我们将原始CMA算法和我们提出的全网络CMA算法应用于人工尖峰序列,以研究这种修改如何改变爆发检测。此后,我们将这些算法应用于自发活动的化学操纵大鼠皮层网络的MEA数据。此外,我们引入一种新的爆发同步度量来比较检测到的爆发的同步性。最后,我们展示如何通过对爆发统计应用k均值聚类,利用爆发统计对网络进行分类。结果表明,所提出的全网络自适应爆发检测提供了一种统一整个网络中爆发定义的方法,从而改进了对神经元活动的评估和分类,例如不同药物的效果。结果表明,该新方法具有足够的适应性,可用于具有不同动态的网络,并且在比较不同发放网络的行为时,例如在发育中的网络中,尤其可行。